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We provide a game-theoretic model of sequential information aggregation motivated by
online question-and-answer forums. An asker posts a question and each user decides when
to aggregate a unique piece of information with existing information. When the quality
exceeds a certain threshold, the asker closes the question and allocates points to users.
We consider the effect of different rules for allocating points on the equilibrium behavior.
A best-answer rule provides a unique, efficient equilibrium in which all users respond
in the first round, for substitutes valuations over information. However, the best-answer
rule isolates the least efficient equilibrium for complements valuations. We demonstrate
alternate scoring rules that provide an efficient equilibrium for distinct subclasses of
complements valuations, and retain an efficient equilibrium for substitutes valuations. We
introduce a reasonable set of axioms, and establish that no rule satisfying these axioms
can achieve the efficient outcome in a unique equilibrium for all valuations.
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1. Introduction

In online question-and-answer forums such as Yahoo! Answers, users can post questions and answer questions on wide
variety of topics. In particular, Yahoo! Answers has 25 categories ranging from Computers & Internet to Travel to Family &
Relationships to Health. Users may post discussion questions, factual questions or polls. In Yahoo! Answers, people do not
exchange money for the exchange of information, but instead receive points for contributions that influence leaderboard
and top-contributor designations, while also allowing users to post their own questions.1

We study a game-theoretic model of a problem of sequential information acquisition that is motivated by these online
question-and-answer forums. In particular, our model is suitable for the study of the design of methods to assign scores to
answers to factual questions, such as “What were the main causes of the Great Plague of London?”. This is because we model
the value of answers submitted to a question as strictly increasing over time, either because users incorporate their own
private information with the information provided by earlier reports, or because the asker is able to piece together different
responses and thus has an increasing value for the answers. Harper et al. (2009) have demonstrated that factual questions
have a higher archival value than discussion questions, justifying the focus of this work. An example of a discussion question
is, “What is your favorite movie of all time?”. Our model is less suitable for these questions, where it makes less sense for
subsequent answers to improve on earlier answers and to incorporate earlier responses.
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Whereas the established model of contest design (Moldovanu and Sela, 2001, 2006) considers agents with costly but
independent effort and seeks to maximize the total effort exerted across all agents, in our model each agent can build
on the work already contributed by other agents, and submit a solution that dominates all solutions so far submitted. In
keeping the model simple, we choose not to model the cost of contributing an answer and model the asker as satisficing,
with a private quality threshold at which she will close the question. In the model, the asker privately draws this quality
threshold at random, and is satisfied with any answer with value above this threshold. The asker prefers to receive a
satisfactory answer sooner rather than later, and closes the question as soon as the threshold is exceeded.

Each user holds a unique piece of information that is relevant to a question, and the strategic decision is decide when to
report this information and aggregate it with previous reports. As information is reported it is aggregated into the responses,
so that the value to the asker monotonically improves while the question remains open. In the case that multiple pieces of
information are simultaneously revealed, we assume that the asker is able to aggregate the information, and we associate
each user that contributed in the round with an answer equal in quality to that achieved through this aggregation. We study
two distinct models for the way in which individual contributions contribute to an overall value of the asker. In particular,
we study a complements case, in which each successive piece of information is worth more to the asker than the previous
one, and a substitutes case in which each successive piece of information is worth less than the previous one.

Our interest is in characterizing the properties of subgame perfect Nash equilibria of this game under different rules for
assigning points, and for users who seek to maximize their expected number of points. By delaying a contribution, a user
runs the risk that the asker will be satisfied with the current answer and close the question. On the other hand, by delaying
a contribution, a user can take advantage of contributions by other users and submit a better answer, thereby increasing
the probability that a user’s answer (if submitted before the question has been closed) will cross the quality threshold of
the asker.

As a designer, we seek to understand which rules induce equilibria in which all users choose to contribute their respec-
tive pieces of information in the first round, and thus immediately and without delay. We first analyze the equilibria for a
best-answer rule, which models the current Yahoo! Answers environment. We find that this rule is effective for substitutes
valuations, where it isolates a subgame perfect Nash equilibrium in which all users reveal information in the first round.
This is the efficient outcome, with the asker receiving a satisfactory answer as soon as possible for all possible quality
thresholds. On the other hand, the best-answer rule is ineffective for complements information, where it isolates an equilib-
rium in which every user posts information in the very last round. For the case of complements information, the expected
gain from an answer with higher quality, that comes from playing later and combining an answer with previous answers, is
greater than the negative effect of delaying and risking that the question will close before submitting an answer.

In addressing this problem, we consider two alternative rules for assigning points to answers. The first rule is an approval-
voting rule, parameterized by integer k > 1, in which the asker assigns one point to the most recent k > 1 answers (or some
random k subset if more than k answers were received in the most recent round) upon closing the question. The approval-
voting rule retains the efficient outcome in an equilibrium of the game for substitutes valuations. The approval-voting rule
also enables the most efficient, all-going-first outcome in an equilibrium for complements information, under certain re-
strictions on the valuation function. But, the approval-voting rule also retains an equilibrium for complements information
in which every user plays in the last round. More problematically, the approval-voting rule also introduces this inefficient
outcome in an equilibrium of the game with substitutes valuations.

The second rule that we introduce is the proportional-share rule, in which the asker assigns a share of the total avail-
able points in proportion to the marginal value contributed by a user in the round in which the user participates. Like the
approval-voting rule, the proportional-share rule enables the most efficient outcome in equilibrium for a large class of com-
plements information. In addition, the proportional-share rule retains the efficient outcome as an equilibrium for substitutes
valuations, and unlike the approval-voting rule, this remains the unique equilibrium.

The approval-voting and proportional-share rules both avoid the incentives for delaying to the last round in the setting
of complements information by spreading the score across more users. They do this in different ways. In particular, both
the approval-voting and proportional-share rules are able to achieve the efficient outcome as a subgame perfect Nash
equilibrium for certain classes of complements valuations. The approval-voting rule, but not the proportional-share rule,
also introduces the inefficient outcome in an equilibrium for environments with substitutes valuations. On the other hand,
the approval-voting rule is a simple generalization of the best-answer rule and likely more relevant to practice because it
does not require new information from the asker when a question has been closed.

A natural question is whether there can be method of assigning points that is first best, in that it isolates the efficient
outcome as a unique equilibrium for all possible complements and substitutes valuation functions. We obtain a negative
result in this regard—we introduce three axioms, anonymity, monotonicity and time-invariance, and show that there is no
payment rule that satisfies these properties and enables the efficient outcome in a unique subgame perfect Nash equilibrium.

1.1. Related work

We believe this to be the first work studying online question-and-answer forums in a game-theoretic light. In terms of
game-theoretic analysis of other systems of human computation (von Ahn and Dabbish, 2008), prior work has presented
a game-theoretic analysis of the ESP game (Jain and Parkes, 2013) and the PhotoSlap game (Ho et al., 2007). These are
so-called Games with a Purpose, games that are designed to be fun to play, with the added benefit that users are doing useful
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work in the process. While the game-theoretic analysis provided is specific to these games, these systems are similar to
question-and-answer forums in that users are motivated by an artificial points system.

Closely related to the design of question-and-answer forums is the area of contests and all-pay auctions. Contests are
situations in which multiple agents exert effort in order to win a prize. All agents bear the “cost” of the effort exerted
regardless of whether they win a prize. Most of the literature on contest design has focused on the case where agents
compete in a single contest for a unique prize and under a model of complete information (Dasgupta, 1986; Tullock, 1980;
Varian, 1980). For instance, Moldovanu and Sela (2001) seek to understand how many prizes should be awarded, and of
what value, where the principal has fixed resources, in order to maximize the total effort exerted across all agents. Still, the
agents do not build from each other’s solutions as in our model. A related model retains simultaneous submissions within
a round, but considers the effect of subdividing the users into a set of parallel sub-contests, with the winners of these
sub-contests competing in a subsequent round (Moldovanu and Sela, 2006).

A number of papers study crowdsourcing contests specifically (Archak and Sundararajan, 2009; Chawla et al., 2011;
DiPalantino and Vojnovic, 2009). For example, DiPalantino and Vojnovic (2009) model a market with multiple contests,
characterizing the equilibrium behavior of their model when workers decide on which contests to invest effort. Other
work has adopted an all-pay auction analysis approach to address the principal’s problem, e.g., how many prizes should be
awarded, and of what value (Archak and Sundararajan, 2009; Chawla et al., 2011). Chawla et al. (2011) make the connection
between crowdsourcing contests and optimal auction design, finding that the optimal crowdsourcing contest is a virtual
valuation maximizer.

Cavallo and Jain (2012a, 2012b) present an alternative model of crowdsourcing, where output is now a stochastic function
of skill and effort rather than a deterministic function, design efficient (social welfare maximizing) mechanisms (Cavallo
and Jain, 2012a), and compare these efficient mechanisms to winner-take-all mechanisms (Cavallo and Jain, 2012b). In
Archak and Sundararajan (2009), Cavallo and Jain (2012a, 2012b), Chawla et al. (2011), DiPalantino and Vojnovic (2009),
the principal experiences disutility for the payments made and therefore apply to settings with real money. Other work
considers models of user-generated content, where users contribute content of varying quality that is rated by other users
and study which mechanisms (with attention-based rewards), induce high quality contributions from users (Ghosh and
Hummel, 2011; Ghosh and McAfee, 2011, 2012). Ghosh and Hummel (2012) consider a setting with virtual points and
identify a mechanism that can implement the principal-optimal outcome for a large class of utility functions (i.e. any utility
function that is a linear combination of the goods submitted). The principal in their model does not experience disutility
for the prize awarded and therefore, the model only applies for a setting with virtual points.

Most of this prior work adopts a model of production with quality that depends on the effort that is exerted, and the
effort exerted in turn depends on the payment rule adopted in the design. In comparison, we model the strategic aspect
facing a worker in a setting in which its contribution will be aggregated with contributions from other workers, and a user’s
strategic decision is in regard to when to contribute, rather than how much effort to exert. A limited number of previous
models have been proposed of sequential contests, where users arrive at distinct time steps and decide how much effort
to exert with the goal of winning a prize (Konrad and Leininger, 2007; Liu et al., 2011; Segev and Sela, 2011). Such work
is different from ours, in that each agent is present only for a single, unique time step, whereas in our model agents are
present for all time steps. Therefore, the strategic decision facing users is, how much effort to exert given the effort levels
of the previous users (and the expected effort levels of future users), whereas in our model, the strategic decision facing
users is when to participate.

There have been a number of empirical studies of online question-and-answer forums. For example, Nam et al. (2009)
show that points are a factor in motivating users to participate in points-based question-and-answer forums. They study
the Naver Knowledge-iN (KiN) system, the largest question and answer community in South Korea. They give a survey to
twenty-six users of KiN and find that points are source of motivation for users, along with altruism, promoting personal
businesses, learning and maintaining personal knowledge. Adamic et al. (2008) study contribution patterns in Yahoo! An-
swers and try to determine the extent to which certain statistical features such as response length effect the probability
of an answer being chosen as a “best answer”. Yang et al. (2008) conduct an empirical study of user behavior on Taskcn,
a popular web-based knowledge sharing market in China (also known as a Witkey). These authors study user behavior over
time, and find that a very small core of successful users manage to increase their win percentage over time and these users
account for 20% of the winning answers. Strategic behavior is demonstrated, in that users learn over time to select tasks
where they are competing against few opponents (and thus increase their chances of winning), and to select tasks with
higher expected rewards.

2. Our model

We focus on modeling how users participate in answering a single question posted by the asker. Each user j ∈ {1, . . . ,n}
has a unique piece of information I j , with I = {I1, I2, . . . , In}. Even though information is private, the fact that everyone
possesses a piece of information out of n total pieces is common knowledge. The information aggregation process proceeds
over a set of discrete rounds, with at most T > 1 rounds, and closes in an earlier round if the value of the aggregate
information reported up to and including that round exceeds a value threshold of the asker. Each user j observes the
participation of other users and selects a single round in which to participate and aggregate I j with the information reported
so far.
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Each piece of information is distinct but equivalent in terms of the value it provides to the asker, so that the asker’s val-
uation function v : {0,1, . . . ,n} → R>0 depends only on the number of distinct pieces of information reported. We assume
that v(0) = 0 and v( j + 1) > v( j) for all 0 � j < n. In posting an answer as the only user active in a round, the value of the
answer is v(�+ 1) where � users had previously posted an answer. By this, each user aggregates all previous answers in the
processing of revealing his information. In posting an answer as one of a set of m users in a round, with � previous posts,
the value of the answer of each of these users is v(� + m) to model the ability of the asker to aggregate all the information
in this case of simultaneous revelation.

Depending on the nature of the question, the pieces of information related to the question may be complements or
substitutes. For example, suppose the asker posts the question: “What should I do for a one-day visit to Boston?”. The two
pieces of information, “walk along the Freedom Trial” and “have lunch at Quincy Market (which is on the Freedom Trial)”
are complements, because the value of knowing both pieces of information for the asker is higher than the sum of the
values of only knowing a single piece of information. However, if the asker posts the question: “Where should I have lunch
in Times Square?", the answers “Becco” and “Kodama” are substitutes for the asker, since the asker must choose between
the two.

Let δ j = v( j) − v( j − 1) for 1 � j � n.

Definition 2.1. In the complements case, the asker’s valuation function must satisfy δ j < δ j+1 for all 1 � j < n.

Definition 2.2. In the substitutes case, the asker’s valuation function must satisfy δ j > δ j+1 for all 1 � j < n.

The asker has a private value threshold θ , sampled uniformly on [0, v(n)]. The distribution from which θ is sampled
is common knowledge. The asker prefers a satisficing answer (with value at least θ ) as soon as possible, and closes the
question in the first round in which the value of an answer meets or exceeds the threshold. Upon closing the question the
asker adopts a rule by which it assigns points (any non-negative value, in general) to some subset of the users who have
responded. Based on this, each user seeks to maximize her expected score. Because we choose not to associate a cost with
the participation of a user, it is without loss to consider only strategies in which a user submits an answer in some round.

Let b(t) ∈ {0, . . . ,n} denote the number of pieces of information revealed up to and including round t ∈ {0,1, . . . , T }.

Lemma 2.3. The probability of stopping in round k, for k � 1, is P (k) = (v(b(k))−v(b(k−1)))
v(n)

.

Proof. The probability of stopping in round k is the probability that θ � v(b(k)) and θ > v(b(k − 1)), which is just
(v(b(k))−v(b(k−1)))

v(n)
for the uniform distribution. �

2.1. The point allocation rules

In this paper, we examine the equilibrium behavior of users in the question-and-answer game under three different
rules.

Best-answer rule. The best-answer rule models the method of assigning points currently used by Yahoo! Answers. In Ya-
hoo! Answers, upon closing the question, the asker can select one answer as the best answer and the associated user is
then awarded some fixed number of points. Without loss of generality, we normalize the number of points awarded to 1.

When the asker closes the question because the value has reached the threshold, the asker awards a single point to the
user i ∈ A that maximizes b(ti), where A is the set of agents who participated before the question closed. In other words,
the best-answer rule awards a single point to the user who provides the answer with the largest total value. If there is
a tie for the answer with the largest total value, ties are broken uniformly at random. Given our assumption that users
incorporate information from previous rounds into their answers, the best-answer rule awards a point to the user who
played in the last round before the question closed.

Approval-voting rule. Under the approval-voting scheme, the asker can provide the same reward to each of k > 1 users,
where k < n. The number of winners, k is a design parameter. Note that if k = 1, this reduces to the best-answer rule.2

Under the approval-voting rule, the k users who provide the answers with the largest total values are rewarded. Given our
assumption that users incorporate the information from previous rounds into their answers, the approval-voting rule awards
a point to the k most recent users.

In our model, we assume that the asker will always assign k < n winners if possible and the k most recent users to
answer before the question is closed will each receive a point, with ties broken uniformly at random. In the special case in
which the question is closed and less than k users have responded, these users each receive one point. When more than k
users respond in the most recent round, then a subset of k winners is selected uniformly at random. Similarly, when less

2 It should be noted that Naver Knowledge-iN allows askers to select more than one best answer.
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than k users (say k1) respond in the most recent round but more than k − k1 users responded in the previous round, then
a subset of k − k1 users from the previous round are selected as winners uniformly at random.

Proportional-share rule. In the proportional-share rule, the asker is given a fixed number of points that she can distribute.
Without loss of generality, we normalize the total number of points to distribute to 1. We assume that the asker distributes
the point according to her valuation function. More specifically, suppose the question closes after �� T active rounds and at
each active round t � � there are nt participants. In the proportional-share rule, the asker distributes v(b(1))

v(b(�))
equally among

the n1 users participated in round 1, and, similarly, distributes v(b(t))−v(b(t−1))
v(b(�))

to the nt users that participated in active
round t > 1, where v(b(t)) denotes the value of the items received at the end of round t .

Given that our game is one of multiple time periods and that users have information about the game play in previous
time periods, we use the subgame perfect Nash equilibrium concept to analyze this game. We use the notion of an active
round in our analysis. A round is considered active if at least one user participates in that round, in equilibrium, when θ = 1.

3. Equilibrium analysis

3.1. Best-answer rule

Let ht denote the history of play up until round t , that is, let ht denote a complete specification of the agents that have
submitted an answer up to but not including round t and the round in which they participated. Consider the following
strategy for agent i:

si
(
ht) =

{
play, if t = T ,

wait, if t < T .

We show that all players adopting this strategy is a unique subgame perfect Nash equilibrium (SPNE) for the best-answer
rule and with complements valuations.

Theorem 3.1. For any valuation function satisfying the complements condition, the unique subgame perfect Nash equilibrium under
the best-answer rule is the strategy profile in which all players always play in the last round.

Proof. Consider an arbitrary subgame characterized by history ht in which user i has not yet played. Assume at the start
of this arbitrary subgame that m users have played thus far. Consider an arbitrary strategy s′ of users �= i. Let j denote
the number of other users that play in the last round when i follows the prescribed strategy and plays in the last round.
The expected payoff to agent i is Pr(θ >

v(n− j−1)
v(n)

|θ >
v(m)
v(n)

) · 1
j+1 . Now consider a single deviation by user i in period t ,

where � denotes the number of other users that participate in round t under s′ . We necessarily have � � n − j − 1. The
expected payoff to agent i for play in this round is Pr( v(m)

v(n)
< θ � v(m+�+1)

v(n)
|θ >

v(m)
v(n)

) · 1
�+1 . Note that Pr(θ >

v(n− j−1)
v(n)

) · 1
j+1 =

(δn− j + · · · + δn) · 1
j+1 and Pr( v(m)

v(n)
< θ � v(m+�+1)

v(n)
) = (δm+1 + · · · + δm+�+1) · 1

�+1 . Since the valuation function satisfies the
complements condition, we know that δi < δ j for all i < j. Therefore, we know that the mean value of the set {δn− j, . . . , δn}
is strictly greater than the mean value of {δm+1, . . . , δm+�+1}, so Pr(θ >

v(n− j−1)
v(n)

) · 1
j+1 > Pr( v(m)

v(n)
< θ � v(m+�+1)

v(n)
) · 1

�+1 for

any positive integer values of j and �. Therefore we have Pr(θ >
v(n− j−1)

v(n)
|θ >

v(m)
v(n)

) · 1
j+1 > Pr( v(m)

v(n)
< θ � v(m+�+1)

v(n)
|θ >

v(m)
v(n)

) · 1
�+1 for any positive integer values of j and �.

This establishes that whatever the strategy of other players forward from any subgame, the strict best response of player
i is to follow the prescribed strategy. This establishes that playing in the last round is a unique SPNE and completes the
proof. �

Now consider the following strategy for player i:

si
(
ht) =

{
play, if t = 1,

no available action, if t > 1.

Theorem 3.2. For any valuation function satisfying the substitutes condition, the unique subgame perfect Nash equilibrium under the
best-answer rule is the strategy profile in which all users play in the first round.

Proof. Consider the first round. Fix an arbitrary strategy s′ of users �= i and let j denote the number of other users that play
in round t = 1. The expected payoff to agent i under the prescribed strategy is v( j+1)

v(n)
· 1

j+1 . Now consider a single deviation
by user i in period 1, where now instead of playing in round 1, player i participates in a later round. Suppose that � other
users participate in this round (with �� n − j − 1 necessarily, under s′). Furthermore assume that m users have participated
before this round, under s′ (where m � j). The expected payoff to agent i is p′

where p′ is the probability the threshold is

�+1
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first reached in this later round, conditioned on s′ . In particular, p′ � v(�+1+m)−v(m)
v(n)

. Because of the substitutes assumption,
v( j+1)−v(0)

v(n)
· 1

j+1 >
v(�+1+m)−v(m)

v(n)
· 1

�+1 , for any values of j, l, and m, and the payoff to player i is always greater if she plays
in the first round.

This establishes that it is a strict best response for agent i to play in the first round whatever the strategies of the other
players, and establishes this as the unique SPNE. �
3.2. Approval-voting rule

The approval-voting rule is parameterized by k ∈ {2, . . . ,n − 1}, where k are the number of points awarded in total.
In considering the case of complementary valuations, we first establish a useful characterization result. The proof of this
lemma is deferred to Appendix A and it is obtained via strong induction on the number of agents in the last two active
rounds.

Lemma 3.3. All agents still to play will play in the same round in the equilibrium play in every SPNE of every subgame under the
approval-voting rule (with k > 1) for any complements valuations.

Consider the following partially-specified strategy for agent i:

s�
i

(
ht) =

{
play, if t = � and no one else has played,

wait, if t < � and no one else has played.

We first show that all players adopting this strategy profile is a subgame perfect Nash equilibrium for any value of
� ∈ {1, . . . , T } for complements valuations that are not too complementary.

Theorem 3.4. For any valuation function that satisfies the complements condition and v(n)−v(n−1)
v(n)

� k
n , all users playing s�

i , for any
value of �, is a subgame perfect Nash equilibrium under the approval-voting rule for k > 1 winners.

Proof. If all users i play strategy s�
i , the on-the-path behavior is for all users to play in round � and the expected payoff

to each player is k
n . Suppose that a player j deviates and goes earlier, we know from Lemma 3.3, that the remaining n − 1

players will all play in the same round in any strategy profile that is an SPNE. Therefore, the expected payoff to a user j
who deviates and goes earlier is less than 1

n in the complements case. Thus this deviation is not profitable.

Now suppose that a user j deviates by going later. By deviating to a later round, the expected payoff is v(n)−v(n−1)
v(n)

,

which is at most k
n by assumption. This completes the proof, and establishes that all players following s�

i is an SPNE for
any �. �
Theorem 3.5. For any valuation function that satisfies the complements condition and v(n)−v(n−1)

v(n)
> k

n , the unique subgame perfect
Nash equilibrium under the approval-voting rule is for all users to play last, in the on-the-path play.

Proof. Given Lemma 3.3, it suffices to consider strategy profiles in which all players participate in the same round in every
subgame. First suppose that all players play in round � < T in equilibrium. The payoff to any player is k

n . Deviation to a later

round obtains v(n)−v(n−1)
v(n)

> k
n , and is profitable. Consider � = T . Suppose player j deviates to an earlier round. Lemma 3.3

tells us that all remaining players will participate in the same round. Therefore the expected payoff to j is v(1)
v(n)

< 1
n < k

n ,
where the first inequality is from the complements property. Thus, the unique subgame perfect Nash equilibrium is for all
users to play last. �

Thus we know for the case of complements valuations, if the valuation function is “very complementary,” the equilib-
rium analysis provides the same outcome as with the best-answer rule, but for less extreme valuations, we have pooling
equilibria, where all users playing in the same round, for any round, is an equilibrium.

Now we shift attention to the case of substitutes valuations. Similar to the complements case, we get a complete char-
acterization result for the case of substitutes valuations. This result is established via strong induction on the number of
agents in the last two active rounds. The proof is deferred to Appendix A.

Lemma 3.6. All agents still to play will play in the same round in the equilibrium play in every SPNE of every subgame under the
approval-voting rule (with k > 1) for any substitutes valuations.

Again consider the partially-specified strategy profile s�
i (h

t) for some � ∈ {1, . . . , T }. The following observation is for
valuations that are not too substitutable.
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Theorem 3.7. For any valuation function that satisfies the substitutes condition and v(1)
v(n)

� k
n , all users playing s�

i , for any value of �,
is a subgame perfect Nash equilibrium under the approval-voting rule for k > 1 winners.

Proof. If all players play strategy s�
i the expected payoff to each player is k

n . Consider a player j who deviates and goes
earlier. Lemma 3.6 tells us that the remaining n − 1 players will play in the same round in any SPNE. Therefore, we know
that the expected payoff of a user j is v(1)

v(n)
· 1 < k

n by assumption. Thus this deviation is not profitable. Considering the
other players, the expected payoff of such a player, conditioned on making it to the next round, for the stipulated strategy,
is k

n−1 . Now consider a deviation by user j to a later round. The expected payoff is v(n)−v(n−1)
v(n)

< 1
n < k

n , where the first

inequality is by the substitutes property. This completes the proof, and establishes that all players following s�
i is an SPNE,

for any �. �
We now establish that the approval-voting rule isolates the most efficient outcome for “very substitutable” valuations.

Theorem 3.8. For any valuation function that satisfies the substitutes condition and v(1)
v(n)

> k
n , the unique subgame perfect Nash

equilibrium under the approval-voting rule is for all users to play first, in the on-the-path play.

Proof. Given Lemma 3.6, it suffices to consider strategy profiles in which all players participate in the same round in every
subgame. First suppose all players play in round � > 1. The payoff to any player is k

n . The expected payoff to a player j who

deviates to an earlier round is at least v(1)
v(n)

, and so greater than k
n by assumption. Consider � = 1. The expected payoff to a

player who deviates to a later round is v(n)−v(n−1)
v(n)

< 1
n < k

n , where the first inequality follows by the substitutes property,
and this is not profitable. This completes the proof. �

In other words, for the case of substitutes, we get that if the valuation function is very substitutable, the unique subgame
perfect Nash equilibrium is for all players to go first. For other substitutes valuations, every pooling profile is a subgame
perfect Nash equilibrium.

3.3. Proportional-share rule

The approval-voting rule can introduce the efficient, all play first outcome in an equilibrium for certain complements
valuations, but also introduces an equilibrium in which all users play in the last round for certain substitutes valuations.
To this end, we consider the proportional-share rule, and seek to understand whether it is possible to obtain the efficient
outcome for complements valuations without introducing the least efficient outcome for substitutes valuations.

Similar to the approval-voting rule, we get a strong characterization result for the proportional-share rule. For this
characterization result, we assume additional structure on complements valuations, namely additive complements. Our char-
acterization result holds for all additive complements valuations, i.e. for all c > 0. Theorem 3.10 is established by strong
induction on the number of players in the last two active rounds and the proof is deferred to Appendix A.

Definition 3.9. We say that a valuation function exhibits additive complements if and only if v(1) = c, v(2) − v(1) = 2c,
v(3) − v(2) = 3c, . . . , v(n) − v(n − 1) = nc for any c > 0. In other words, v(1) = c, v(2) = 3c, . . . , v(n − 1) = n(n−1)c

2 ,

v(n) = (n+1)nc
2 .

Theorem 3.10. All agents still to play will play in the same round in the equilibrium play in every SPNE of every subgame under the
proportional-share rule for any additive complements valuations.

Thus for the case of additive complements, it suffices to consider cases where agents play in the same round in every
subgame.

Lemma 3.11. For any valuation under the proportional-share rule and any strategy profile in which all users playing in the same

round: (a) if v(1)
v(n)

� 1 −
√

n−1
n , a user cannot profitably deviate by going in an earlier round, and (b) if v(n−1)

v(n)
� 1 −

√
1
n , a user cannot

profitably deviate by going in a later round.

Proof. Consider the strategy profile consisting of all users going in the same round. The expected payoff of each user is 1
n .

Consider a user who deviates by playing in a later round. The expected payoff of such a user is (1 − p) · (1 − p), where

p = v(n−1)
v(n)

. In order for this deviation not to be profitable, we need (1 − p)2 � 1
n , or equivalently, p � 1 −

√
1
n . Now consider

a user who deviates by playing in an earlier round. Theorem 3.10 tells us that the remaining n − 1 players will play in the
same round in an SPNE. Therefore, the expected payoff of such a user is p + (1 − p) · p, where p = v(1)

v(n)
. In order for this

deviation not to be profitable, we need p + (1 − p) · p � 1 , or equivalently, p � 1 −
√

n−1 . �
n n
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In fact, for n � 3, we have pooling equilibria, where all users playing in the same round is an equilibrium, for any round.
For the case of n = 2, the only equilibrium is in which both players play first.

Theorem 3.12. For the case of additive complements, with n � 3, the set of SPNE involve all users playing in the same round for any
round.

Proof. From Theorem 3.10, it suffices to consider strategy profiles where all users play in the same round. From Lemma 3.11,

it suffices to show that v(1)
v(n)

� 1 −
√

n−1
n and v(n−1)

v(n)
� 1 −

√
1
n . Since n(n + 1)2 < (n − 1)(n + 2)2 for all n � 3, we know that

n−1
n < (

(n−1)(n+2)
n(n+1)

)2 and
√

n−1
n <

n(n+1)−2
n(n+1)

= 1 − 2
n(n+1)

, so 2
n(n+1)

< 1 −
√

n−1
n , and equivalently v(1)

v(n)
< 1 −

√
n−1

n for additive

complements. Since (n + 1)2 > 4n for all n > 1, we know that 1
n > ( 2

n+1 )2 and equivalently 1
n > (1 − v(n−1)

v(n)
)2 for additive

complements, and so
√

1
n > 1 − v(n−1)

v(n)
and v(n−1)

v(n)
> 1 −

√
1
n . �

In fact, one can also see from Lemma 3.11 that when v(1)
v(n)

> 1 −
√

n−1
n and v(n−1)

v(n)
< 1 −

√
1
n hold there are no pooling

SPNE and thus there must be separating equilibria for complements valuations that satisfy these conditions under the
proportional-share rule. An example of valuation function that has a separating equilibrium under the proportional-share
rule is as follows: v(1)/v(3) = 0.19, v(2) − v(1)/v(3) = 0.21, v(3) − v(2)/v(3) = 0.6.

Finally we show that the efficient “all-going-first” outcome is preserved in the unique equilibrium for substitutes valua-
tions under the proportional-share rule.

Theorem 3.13. For any valuation that satisfies the substitutes condition, the unique subgame perfect Nash equilibrium under the
proportional-share rule is the strategy profile consisting of all users going first in every subgame.

Proof. Consider the strategy profile in which all players play first. Lemma 3.11 tells us that if all users are going in the first

round, no user has incentive to deviate if and only if the valuation function satisfies the condition: v(n−1)
v(n)

� 1 −
√

1
n , which

is always satisfied by any valuation function that satisfies the substitutes condition. Now consider the situation where all
users go in the same round, that is not the first round. The expected payoff of a user who deviates by playing in an earlier
round is at least v(1)

v(n)
, regardless of the game play of other agents. We know that v(1)

v(n)
> 1

n , and thus a player always wants to
deviate and go earlier. Consider any strategy profile in which there are two or more active rounds. Suppose that j users play
in the last active round. The expected payoff of a user who participates in the last active round is (1 − v(n− j)

v(n)
) · v(n)−v(n− j)

jv(n)
.

Consider the expected payoff of a user in the last round who deviates by going in the first active round. Suppose that i users
participate in the first active round, including the user who deviated. Her expected payoff is at least v(i)

v(n)
· 1

i , regardless of the

game play that follows. For any valuation function that satisfies the substitutes condition, we know that v(i)
i � v(n)−v(n− j)

j ,

so v(i)
iv(n)

> (1 − v(n− j)
v(n)

) · v(n)−v(n− j)
jv(n)

. Thus no strategy profile in which there are two or more active rounds can be a Nash
equilibrium. �
3.4. Discussion

While the model makes a number of simplifying assumptions, the results can be generalized in some places. First, the
results hold for a larger family of distributions (over the asker’s threshold) than just the uniform distribution. They hold for
any distribution that preserves the complements or substitutes nature of the valuation. More specifically, we had defined
the δ j = v( j) − v( j − 1) for all 1 � j � n and θ was drawn uniformly from [0, v(n)], but we could equivalently define
the δ j in terms of the probability distribution, e.g. δ j = Pr(v( j − 1) < θ � v( j)). Defined this way, the results given for
complements valuations would hold for any threshold distribution that satisfies the property Pr(v( j − 1) < θ � v( j)) <

Pr(v( j) < θ � v( j + 1)) (or equivalently δ j < δ j+1). Similarly, the results given for substitutes valuations would hold for any
threshold distribution that satisfies the property Pr(v( j −1) < θ � v( j)) > Pr(v( j) < θ � v( j +1)) (or δ j > δ j+1). In addition,
our results also hold in an equivalent model where there is a threshold integer t drawn uniformly at random from [0,n]
and representing the contribution at which the asker’s value stops increasing, such that v( j + 1) > v( j) for all j < t and
v( j + 1) = v( j) for all j � t .

Other assumptions that we make in the treatment are that (a) the number n of users (or participants) is common
knowledge, (b) the users are all present at all time steps, and (c) the users know the structure of the asker’s valuation
function, and in particular whether it is a subclass of substitutes or complements for some of the analysis. In fact, none of
our analysis depends in a critical way on users having knowledge of the number of users in the system.3 Considering the

3 We note for the approval-voting scoring rule, that some of the results require knowing the relative value of the first item with respect to k and n (for
substitutes) and the relative value of the last item with respect to k and n for complements, but that this is a weaker condition than knowing n exactly.
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analysis for the best-answer rule, the results extend to a setting with arrivals and departures. For substitutes valuations,
a user will want to participate in the first round that she is present. For complements valuations, a user will want to
participate in the last round that she is present. The results are also robust, in that they do not require specific knowledge
of the asker’s valuation beyond it being substitutes or complements.

Turning to the approval-voting rule, this analysis does require knowledge of a specific subclass of substitutes or comple-
ments valuations, and we do not see how to generalize the analysis to users who arrive and depart. Such a generalization
would likely require additional conditions on the structure of the valuation function. The current results require conditions
on the relative value of the first item for substitutes valuations as compared to k and n (and the last item for complements
valuations). For arbitrary arrival and departure times, we would need conditions on the relative value of each item. For the
proportional-share rule, specific knowledge of a subclass of valuations is required for the complements analysis but not for
the substitutes analysis. For substitutes valuations, the equilibrium in which all users contribute information in the first
round generalizes to a setting with arrival and departures, since the analysis involves a dominant strategy argument. On the
other hand, it does not seem straightforward to generalize the analysis of proportional share under complements to handle
arrivals and departures.

4. An axiomatic treatment

The best-answer rule isolated an equilibrium that supports the efficient, all-going-first, outcome for substitutes val-
uations. But on the other hand, the unique equilibrium has all users waiting until the last possible round to reveal
their information for the case of complements valuations. In comparison, both the approval-voting and proportional-share
rules are successful in attaining the efficient outcome in an equilibrium for certain subclasses of complements valuations.
By tuning parameter k, the approval-voting rule can enable this for a larger class of complements valuations than the
proportional-share rule. Still, the least efficient outcome is retained in the equilibrium for some complements valuations
under both rules. Another consideration is that the approval-voting rule, but not the proportional-share rule, also introduces
an equilibrium that corresponds with the least efficient outcome for substitutes valuations.

These results beg the question: Does there exist a rule for assigning points that isolates the best possible equilibrium for all asker
valuations? To answer this question we introduce three reasonable axioms for rules for assigning points in the context of
question-and-answer forums, and prove that no rule can meet these axioms and always isolate a unique equilibrium in
which the outcome is efficient, for all substitutes and complements valuations.

In building some intuition, consider the following three possible rules:

1. “Pay you only if you go first": In this rule, the asker pays each user who goes in the first round 1
j , where j is the

number of users who participate in the first round, and pays everyone else 0.
2. “Second-to-last”4: In this rule, the asker pays each user who goes in the second to last active round 1

j , where j is the
number of users who participate in the round and pays everyone else 0. If there is only one active round, players each
receive 1

j , where j is the number of users who participate in that active round.

3. “Uniform”: The asker pays each user 1
j regardless of which round she participates in, where j is the number of users

who get their information in before the question closes.

In the case of the first and the third rules, playing first is a dominant strategy, and the only subgame perfect Nash
equilibria. In the first rule, an agent’s expected payoff of playing in the first round is strictly positive whereas it is zero for
playing in a later round. In the third rule, we note that for a fixed value of θ , an agent is paid the same regardless of which
round he plays, as long as she gets her answer in. Therefore, an agent will always want to play first.

In the second rule, the all-going-first outcome is supported in the subgame perfect Nash equilibrium, because any player
that deviates and goes later will receive a payoff of 0, for any value of θ . However, this is not a unique equilibrium. For
example, all users playing in round �, for all 1 < � < n, is also a subgame perfect Nash equilibrium. A deviation of playing
later yields payoff of 0, as opposed to 1

n . If a user deviates and participates in round �′ < �, and the remaining n − 1 players
respond with n − 2 players participating in round �′ + 1, followed by the last player in round �′ + 2, this is not a profitable
deviation.

Let us now introduce three natural axioms for rules for assigning points to users in our model of sequential information
revelation. For this, let a configuration �c = (t1, t2, . . . , tn), denote a realization of play in which user i participates in round ti ,
unless the question closes before that round. For example, the configuration corresponding to an equilibrium strategy pro-
file defines the rounds in which each agent plays for θ = 1. Let �p(�c, θ) = (p1, p2, . . . , pn) denote the expected payoff to
each player for configuration �c and threshold θ , as induced by a rule, where the expectation is taken with respect to any
randomization within the rule. Let bfirst(�c, t) and blast(�c, t) denote the total number of answers submitted in configuration
�c after one of the agents (if any) plays in round t and at the end of round t , respectively. Adopt v(b(t)) as shorthand for
v(�c,blast(t)), and the total value that accrues by the end of round t .

4 We would like to acknowledge Yoav Wilf for suggesting this rule.
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1. Anonymous: A rule is anonymous if, for all asker valuation functions, and any configuration �c1 = (t1, t2, . . . , tn), any
threshold θ , and any permutation σ , where �c2 = σ(�c1), we have that �p(�c2, θ) = σ(�p(�c1, θ)).

2. Time-invariance: A rule is time invariant if, for all asker valuation functions, and any pair of configurations �c1 =
(t1, t2, . . . , tn), �c2 = (s1, s2, . . . , sn) such that si − ti = d for all 1 � i � n, for some integer d, then pi(�c1, θ) = pi(�c2, θ) for
all 1 � i � n.

3. Value-monotonic: A rule is value monotonic if there exists an α ∈ [0,1] such that, for every asker valuation function,
we have:
(a) for every configuration, every pair of players i, j, and every θ > {v(b(ti − 1)), v(b(t j − 1))}, then v ′

α(�c, ti) �
v ′
α(�c, t j) ⇒ pi(�c, θ) � p j(�c, θ), and

(b) for every configuration �c, every pair of players (i, j) ∈ arg max(i, j)[v ′
α(�c, ti) − v ′

α(�c, t j)], there exists a θ > {v(b(ti −
1)), v(b(t j − 1))} for which v ′

α(�c, ti) > v ′
α(�c, t j) ⇒ pi(�c, θ) > p j(�c, θ),

where contributed value v ′
α(�c, t) is defined to be either v(blast(�c, t)) − α · v(blast(�c, t) − 1) or v(bfirst(�c, t)) − α ·

v(bfirst(�c, t) − 1).

To give examples, if α = 1 and v ′
α(�c, t) is defined in terms of bfirst, then value monotonicity insists on properties on

the payoff to a player that depend on the marginal value contributed as though the player were to play first in the round
in which it plays. On the other hand, if α = 0 and v ′

α(�c, t) is defined in terms of blast, then value monotonicity insists on
properties on the payoff to a player that depend on comparing the total value at the end of the round in which the player
submits an answer. Essentially, the value-monotonicity axiom seeks to be agnostic about whether the appropriate “measure”
of value contributed is marginal or cumulative (α = 1 or 0) and whether a player is considered to go first in a round or last
in a round.

Condition 3(a) is a weak monotonicity property while condition 3(b) insists on strong monotonicity for at least a pair of
players (i, j) for which the difference on contribution is the greatest and for at least some threshold, θ . Note that 3(b) holds
vacuously for a configuration �c in which all players play in the same round because contributed value v ′

α(�c, ti) = v ′
α(�c, t j)

for all i, j and any definition of v ′ and α. A rule is value monotonic if 3(a) and 3(b) hold for some choice of α and some
choice of v ′

α , which can be alternatively constructed in terms of bfirst or blast. A rule is not value monotonic if there is no
such α and v ′

α combination under which it meets conditions 3(a) and 3(b) for all valuation functions and all configurations.

Remark 4.1. The “pay-you-if-you-go-first” rule satisfies anonymity, but violates time independence and value monotonicity.

Proof. The payoffs under this rule are indifferent to permutations of the configuration, however the payoffs are not indif-
ferent to shifts in time. All users participating in round � = 1 will lead to a payoff of 1

n for each. All users participating
in round � > 1 will lead to a payoff of 0 for each. Now we consider value monotonicity. Consider θ = 1 and the con-
figuration �c in which player i plays in the first round and all other players play in the second round. In this scenario,
player i will receive a payoff of 1, while all other players receive a payoff of 0. However, for any complements valuation,
v(1) < v( j)− v( j − 1) � v( j)−αv( j − 1) for any α ∈ [0,1], any j > 1. From this, we have v ′

α(�c, ti) = v(1)−αv(0) = v(1) <

v( j) − αv( j − 1) � v ′
α(�c, tr), for any player r to play in the second round, where the first equality and the final inequality

both hold irrespective of whether v ′
α is defined on blast or bfirst. �

Remark 4.2. The “second-to-last” rule satisfies time independence and anonymity, but violates value monotonicity.

Proof. The payoffs under this rule are indifferent to permutations of the configuration and indifferent to shifts in time. Now
we consider value-monotonicity. Consider θ = 1 and the configuration c in which player i plays in the first round and all
other players play in the second round. In this scenario, player i will receive a payoff of 1, while all other players receive a
payoff of 0. The rest of the proof follows according to that of Remark 4.1. �
Remark 4.3. The uniform rule satisfies anonymity and time independence, but violates value monotonicity.

Proof. The payoffs under this rule are indifferent to permutations of the configuration and indifferent to shifts in time. Now
we consider value monotonicity and specifically 3(b). Consider a configuration �c in which each player plays in a separate
round. Consider any complements valuation function and players (i, j) maximizing the difference in contributed value. For
any definition of adjusted value, we must have v ′

α(�c, ti) > v ′
α(�c, t j) since the players play in different rounds; e.g., if α = 0

and v ′
α is defined on blast then this is the total value in a round. But uniform assigns the same score to every player who

answers before the question closes, and so there is no θ that allows both i and j to play for which i’s payoff is higher than
j’s in configuration �c. �

We can revisit the best-answer, approval-voting and proportional-share rules introduced earlier, and consider them from
this axiomatic perspective.

Remark 4.4. The best-answer rule satisfies anonymity, time independence, and value monotonicity.
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Proof. The payoffs under this rule are indifferent to permutations of the configuration and indifferent to shifts in time.
Now we consider value monotonicity for α = 0 and v ′

α defined on blast so that v ′
α(�c, ti) = v(b(ti)). Now, consider any

configuration �c, any i, j and restrict attention w.l.o.g. to θ for which both i and j play. For condition 3(a), suppose v ′
α(�c, ti)�

v ′
α(�c, t j), so that we must have ti � t j . Then, we have pi(�c, θ) � p j(�c, θ) since if ti > t j then p j(�c, θ) = 0, while if ti = t j then

the (expected) payoff is the same. Finally, if v ′
α(�c, ti) > v ′

α(�c, t j) and so ti > t j , we have pi(�c, θ) > p j(�c, θ) for vi(b(ti)−1)
v(n)

<

θ � vi(b(ti))
v(n)

because p j(�c, θ) is 0 and agent i competes to win with the other players (if any) in ti . �
Remark 4.5. The approval-voting rule satisfies anonymity, time independence, and value monotonicity.

Proof. The payoffs under this rule are indifferent to permutations of the configuration and indifferent to shifts in time. Now
we consider value monotonicity for α = 0 and v ′

α defined on blast, so that v ′
α(�c, ti) = v(b(ti)). Consider any configuration �c,

any i, j and restrict attention w.l.o.g. to θ for which both i and j play. For condition 3(a), suppose v ′
α(�c, ti) � v ′

α(�c, t j),
so that we must have ti � t j . Then, if ti > t j then whenever j scores i also scores and thus p j(�c, θ) � pi(�c, θ). If ti = t j
then their (expected) payoff is the same. Then, consider a pair (i, j) that maximizes the difference v(b(ti)) − v(b(t j)), so
that i plays in the first active round and j in the last active round. Condition 3(b) holds trivially for a configuration in
which all players play in the same round, and so consider the case where ti > t j . Fix θ = 1. For all valuation functions,
we have if j scores then i scores. Moreover, conditioned on i receiving points, j’s expected payoff is strictly less than 1
because j must compete for any remaining points max(0,k − (n − n(ti))) where n(ti) play in round ti with n(ti) players,
with n(ti) > max(0,k − (n − n(ti))) since k < n. This completes the proof. �
Remark 4.6. The proportional-share rule satisfies anonymity, time independence, and value monotonicity.

Proof. The payoffs under this rule are indifferent to permutations of the configuration and indifferent to shifts in time.
Now we consider value-monotonicity, with α = 1 and v ′

α defined on bfirst, so that vα(�c, ti) = v(b(ti − 1) − 1) − v(b(ti − 1)).
Consider any configuration �c, any i, j and restrict attention w.l.o.g., to any θ for which both i and j play. First suppose that
v(b(ti − 1) − 1) − v(b(ti − 1)) = v(b(t j − 1) − 1) − v(b(t j − 1)). For both substitutes and complements valuations, we must
have ti = t j , from which the expected payoff is the same to i and j for any θ that allows round ti = t j . This establishes part
of what is required for condition 3(a).

Second, suppose that v(b(ti − 1) − 1) − v(b(ti − 1)) > v(b(t j − 1) − 1) − v(b(t j − 1)). We establish conditions 3(a) and
3(b) by showing that for all θ in which both players play, i’s payoff is strictly greater than j’s. For complements valuations,
we must have ti > t j . Conditioned on both agents playing, agent i’s expected payoff is v(b(ti))−v(b(ti−1))

v(b(tr ))
· 1

i , where the

game terminates in round r and agent j’s expected payoff is
v(b(t j))−v(b(t j−1))

v(b(tr ))
· 1

j . Then, we have v(b(ti))−v(b(ti−1))
v(b(tr ))

· 1
i >

v(b(t j))−v(b(t j−1))

v(b(tr ))
· 1

j by complements. For substitutes valuations, we must have ti < t j and agent i’s expected payoff is
v(b(ti))−v(b(ti−1))

v(b(tr ))
· 1

i , compared to
v(b(t j))−v(b(t j−1))

v(b(tr ))
· 1

j for agent j. Then, we have v(b(ti))−v(b(ti−1))
v(b(tr ))

· 1
i >

v(b(t j))−v(b(t j−1))

v(b(tr ))
· 1

j
by substitutes. �

The following theorem establishes that we cannot have a rule satisfy all three axioms and isolate the most efficient,
all-going-first equilibrium as the unique subgame perfect Nash equilibrium.

Theorem 4.7. There is no rule for assigning points to answers that satisfies anonymity, time independence, and value monotonicity
and isolates the all-going-first equilibrium as the unique subgame perfect Nash equilibrium for all asker valuation functions.

Proof. Assume otherwise, that is, assume that there exists a rule that satisfies anonymity, time independence, and value
monotonicity and isolates the all-going-first equilibrium as the unique subgame perfect Nash equilibrium for all asker val-
uation functions. This means that if players all go in the first round, there is no profitable deviation (of going later). Now
consider the strategy profile in which players all play in the tth round where t > 1. First observe that there is no useful
deviation by a player going later, because by time independence, this profitable deviation would still be available for the
t = 1 strategy profile. Hence it suffices to consider deviations (say, by player 1) to an earlier round � < t . The payoff to
player 1 from playing in round t is 1

n by anonymity.
Consider a complements valuation, and let �c denote the configuration where 1 plays in round � and arbitrary play by

the rest in subsequent rounds. By complements, we have v(1) − αv(0) = v(1) < v(m) − v(m − 1) � v(m) − αv(m − 1) for
all α ∈ [0,1], any m > 1. From this, then for any construction of contributed value v ′

α , i.e. any α ∈ [0,1] and with the use
of bfirst or blast, we must have v ′

α(�c, �) < v ′
α(�c, t j) for any j �= 1. For the moment, consider θ >

v(n−1)
v(n)

, i.e. high enough so
that all players play. By value monotonicity, we must have p1(�c, θ) � p j(�c, θ) for all j �= 1.

Denote by n an agent who plays in the last active round in �c. By complements, pair (1,n) maximizes the difference
v ′
α(�c, ti) − v ′

α(�c, t j) for any construction of the contributed value function v ′
α . To see this: if α = 0 then v ′

α(�c, t j) is min-
imized for j = 1, for either v ′

α(�c, t j) = v(bfirst(�c, t j)) or v ′
α(�c, t j) = v(blast(�c, t j)). Similarly, v ′

α(�c, t j) is maximized for an
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agent that plays in the last active round. Alternatively, if α = 1 then v ′
α(�c, t) is the marginal value contributed, either by the

first answer or the last answer in round t , and by complements this is minimized for the first active round and maximized
for the last active round. Clearly, (1,n) is also a maximizing pair for any α ∈ (0,1). Then, by strict value monotonicity (3(b)),
there must exist a θ >

v(n−1)
v(n)

such that p1(�c, θ) < pn(�c, θ).
So, E

θ>
v(n−1)

v(n)
[pn(�c, θ)] > E

θ>
v(n−1)

v(n)
[p1(�c, θ)] and E

θ>
v(n−1)

v(n)
[p j(�c, θ)] � E

θ>
v(n−1)

v(n)
[p1(�c, θ)] for all j �= 1. Since

E
θ>

v(n−1)
v(n)

[p1(�c, θ)] + E
θ>

v(n−1)
v(n)

[p2(�c, θ)] + · · · + E
θ>

v(n−1)
v(n)

[pn(�c, θ)] = 1, we must have E
θ>

v(n−1)
v(n)

[p1(�c, θ)] < 1
n . The pay-

off to agent 1 for all θ � v(n−1)
v(n)

is at most 1, therefore its payoff for deviating earlier, Eθ [p1(�c, θ)] � Pr(θ � v(n−1)
v(n)

) +
E

θ>
v(n−1)

v(n)
[p1(�c, θ)]. In order for this deviation not to be profitable for player 1, we need Eθ [p1(�c, θ)] < 1

n . Setting

v(n−1)
v(n)

< 1
n − E

θ>
v(n−1)

v(n)
[p1(�c, θ)], gives us the desired result. Therefore, there exists a sufficiently complementary valua-

tion such that the payoff of any player for deviating earlier is less than playing in round t > 1. Hence all players going in
round t , for any t > 1, is supported by a subgame perfect Nash equilibrium. �
5. Conclusions

We have introduced a game-theoretic model for the sequential revelation of answers by users who participate in
question-and-answer forums. The best-answer rule, which models the rule used by Yahoo! Answers, is effective when
the asker has a substitutes valuation function for information, but enables only the least efficient outcome, in which every
user plays in the very last round, for complements valuations. In considering the effect of different rules on the equilibrium
structure of the game, we have identified two rules (the approval-voting and proportional-share rules) that lead to efficient
outcomes for subclasses of complements valuations. For substitutes valuations, the approval-voting rule can also introduce
equilibria in which all users play last, while the proportional-share rule retains the efficient outcome in the unique equi-
librium. Adopting an axiomatic approach, we establish that there does not exist a rule for assigning points to users based
on answers that satisfies a set of reasonable axioms and isolates an equilibrium in which all users reveal their information
immediately.
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Appendix A

A.1. Approval-voting rule

Lemma 3.3. All agents still to play will play in the same round in the equilibrium play in every SPNE of every subgame under the
approval-voting rule (with k > 1) for any complements valuations.

This result is established via strong induction on the total number of agents that play in the last two active rounds (in
equilibrium).

Lemma A.1. No strategy profile (with at least two active rounds in equilibrium) that has l � k players in the last two active rounds can
be a subgame perfect Nash equilibrium with the approval-voting rule (with k > 1) for any valuation function.

Proof. Consider the subgame corresponding to the penultimate active round. Suppose that i agents play in this round and
j play in the last active round. The expected payoff (conditioned on reaching this subgame) of an agent in the last active
round is p2 = Pr(θ >

v(n− j)
v(n)

|θ >
v(n− j−i)

v(n)
) = δn− j+1+···+δn

δn− j−i+1+···+δn
. By deviating to the penultimate active round, its expected payoff

would be 1 since the agent is then sure to be one of the last k agents to play before the question closes. Therefore, the
player can profitably deviate. �

From this, we can immediately establish the base case of our induction. The base case holds equally for both substitutes
and complements valuations.

Lemma A.2. No strategy profile (with at least two active rounds in equilibrium) that has two players in the last two active rounds can
be a subgame perfect Nash equilibrium under the approval-voting rule (with k > 1) for any valuation function.

Proof. Immediate from Lemma A.1 since k > 1. �
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Now we are ready for the inductive step. Define Sl as follows: No strategy profile (with at least two active rounds in equilib-
rium) that has l players in the last two active rounds can be a subgame perfect Nash equilibrium with the approval-voting rule (with
k > 1) for complements valuations.

Lemma A.3. Given that statements S2, . . . , Sl are true for l < n, then Sl+1 is true.

Proof. By Lemma A.1 we can focus on the case of k < l. For ease of presentation, refer to the penultimate active round as
round #1 and the last active round as round #2. Suppose i agents play in #1 and j in #2 (where i + j = l + 1). For now,
assume that i � 2. In all cases, consider the subgame (round #1) reached when all players are following the prescribed
strategy, and condition on having reached this subgame.

Consider the case that j = 1. Since k < i + j, we can assume i � k. The expected payoff to an agent in #1 is p1 · k
i +

p2 · k−1
i where p1 = Pr(θ � v(n− j)

v(n)
|θ >

v(n− j−i)
v(n)

) = δn− j−i+1+···+δn− j
δn− j−i+1+···+δn

and p2 = Pr(θ >
v(n− j)

v(n)
|θ >

v(n− j−i)
v(n)

) = δn− j+1+···+δn
δn− j−i+1+···+δn

,

and recognizing that the agent can compete for votes in the event that the question closes in #2. Consider a deviation
to a later round by such an agent. By the inductive hypothesis, this would be a subgame with l or less players, and so
all would play in the same round. The expected payoff would be p3 = Pr(θ >

v(n− j−1)
v(n)

|θ >
v(n− j−i)

v(n)
) = δn− j+···+δn

δn− j−i+1+···+δn
. For

an SPNE we need p1 · k
i + p2 · k−1

i � p3 (Eq. (6)). The expected payoff to the agent in #2 is p2. Deviating to #1 would

bring this agent payoff k
i+1 and so for an SPNE we need p2 � k

i+1 (Eq. (5)), which becomes δn � (δn−i + · · · + δn) · k
i+1 .

Eq. (6) becomes (δn−i + · · · + δn−1) · k
i + δn · k−1

i � δn−1 + δn , and so (δn−i + · · · + δn−1) · k + δn · k � i · δn−1 + (i + 1) · δn , and
so (δn−i + · · · + δn) · k > (i + 1) · δn , and a contradiction with (Eq. (5)).

Continuing, we can now assume j > 1, along with i � 2.
Consider the case i < k and j � k. The expected payoff to an agent in #1 is p1 and deviating to a later round brings p3 ·

k
j+1 by a similar argument to above (and appeal to the inductive hypothesis.) For an SPNE, we need v(n − j)− v(n − j − i)�
(v(n) − v(n − j − 1)) k

j+1 . But, v(n− j)−v(n− j−i)
k <

v(n− j)−v(n− j−i)
i <

v(n)−v(n− j−1)
j+1 where the first inequality follows since

i < k � j and the second by the complements property. Therefore a user in #1 has a profitable deviation.
Consider the case i < k and j < k, still with k < i + j. Now, the expected payoff to an agent in #1 is p1 + p2 · k− j

i ,

and to preclude a useful deviation we need p1 + p2 · k− j
i � p3 (Eq. (1)). By similar arguments to above, we also require

p2 � p4 + p5 · k− j+1
i+1 (Eq. (2)), where p4 = Pr(θ � v(n− j+1)

v(n)
|θ >

v(n− j−i)
v(n)

) and p5 = Pr(θ >
v(n− j+1)

v(n)
|θ >

v(n− j−i)
v(n)

) to preclude

a useful deviation by an agent in #2 to #1. Eq. (1) becomes (δn− j−i+1 +· · ·+δn− j)+ (δn− j+1 +· · ·+δn) · k− j
i � δn− j +· · ·+δn ,

or equivalently δn− j+1 + · · · + δn � (δn− j−i+1 + · · · + δn− j−1) + (δn− j+1 + · · · + δn) · k− j
i . Eq. (2) becomes (δn− j−i+1 + · · · +

δn− j+1)+(δn− j+2 +· · ·+δn) · k− j+1
i+1 � δn− j+1 +· · ·+δn . Combining with Eq. (1) and canceling terms, this gives δn− j +δn− j+1 +

(δn− j+2 + · · · + δn) · k− j+1
i+1 � (δn− j+1 + · · · + δn) · k− j

i , but this is a contradiction because k < i + j and so k− j+1
i+1 >

k− j
i .

Consider the case i � k and j � k. The expected payoff to an agent in #1 is p1 · k
i and to be an SPNE we require

p1 · k
i � p3 · k

j+1 . For this, we need v(n − j) − v(n − j − i) k
i � (v(n) − v(n − j − 1)) k

j+1 , but v(n− j)−v(n− j−i)
i <

v(n)−v(n− j−1)
j+1

for any complements valuation.
Consider the case i � k and j < k. Considering a deviation by an agent in #1, we need p1 · k

i + p2
(k− j)

i � p3. This requires

(δn− j−i+1 +· · ·+δn− j)· k
i +(δn− j+1 +· · ·+δn)· k− j

i � δn− j +· · ·+δn , and so (δn− j−i+1 +· · ·+δn− j)· k
i +(δn− j+1 +· · ·+δn)· k− j

i >

δn− j+1 + · · · + δn , or equivalently, (δn− j−i+1 + · · · + δn− j) · k
i > (δn− j+1 + · · · + δn) · i+ j−k

i (Eq. (3)). Considering a deviation by

an agent in #2, we also need p2 � p4 · k
i+1 + p5 · k− j+1

i+1 . This requires δn− j+1 + · · · + δn � (δn− j−i+1 + · · · + δn− j+1) · k
i+1 +

(δn− j+2 + · · · + δn) · k− j+1
i+1 , and so δn− j+1 + · · · + δn > (δn− j−i+1 + · · · + δn− j) · k

i+1 + (δn− j+1 + · · · + δn) · k− j+1
i+1 (since j > 1

and so k
i+1 <

k− j+1
i+1 ), or equivalently, (δn− j+1 + · · ·+ δn) · i+ j−k

i+1 > (δn− j−i+1 + · · ·+ δn− j) · k
i+1 . We have a contradiction with

Eq. (3), and so this cannot be part of an SPNE.
Finally, we must consider the case i = 1. From Lemma A.4, we know this case cannot be an SPNE. �

Lemma A.4. No strategy profile (with at least two active rounds in equilibrium) in which there is one player in the penultimate active
round and l players in the last active round can be an SPNE with the approval-voting rule (with k > 1) for any complements valuation
function, given that no strategy profile is an SPNE when there are either (a) at most l players in the last two active rounds, or (b) exactly
l + 1 players in the last two active rounds with at least two players in the penultimate active round.

Proof. Let i be the player who participates in the penultimate active round. We will establish this via strong induction
on the number of rounds before T where agent i plays. The expected payoff is conditioned throughout on reaching the
penultimate active round.

Base case: No strategy profile with at least two active rounds in equilibrium in which there is one player in the penulti-
mate active round and this round is in period T − 1 can be an SPNE. Let j denote the number of players in the last active
round. By Lemma A.1 we can assume j � k. The expected payoff to player i is Pr(θ � v(n− j) |θ >

v(n− j−1)
) = δn− j , and
v(n) v(n) δn− j+···+δn
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deviating to play in round T brings expected payoff (conditioned on reaching the penultimate active round) of k
j+1 . In order

for this to be part of a subgame perfect Nash equilibrium, we need
δn− j

δn− j+···+δn
� k

j+1 . But since (δn− j +· · ·+ δn) · 1
j+1 � δn− j ,

for the case of complements, we know that (δn− j + · · · + δn) · k
j+1 > δn− j (for k > 1), and thus this strategy profile cannot

be a subgame perfect Nash equilibrium.
Inductive hypothesis: No strategy profile (with at least two active rounds in equilibrium) in which there is one player in

the penultimate active round, and this round is r + 1 periods before T can be an SPNE. Again, focus on the case that j � k
(because otherwise we can appeal to Lemma A.1). Consider what happens when the player in the penultimate active round
deviates and goes later. By assumption (a) in the statement of the lemma we know that there can be at most two active
rounds in the resulting subgame, because otherwise the last two active rounds would include l or less players. Then, by the
inductive case for r periods to go and by assumption (b) in the statement of the lemma, the only SPNE in that subgame
involves all players playing in the same round. Then, by the same analysis as for the base case, a player in the penultimate
active round can profitably deviate to play in the same round with the other j players. This completes the proof. �
Lemma 3.6. All agents still to play will play in the same round in the equilibrium play in every SPNE of every subgame under the
approval-voting rule (with k > 1) for any substitutes valuations.

This result is established via strong induction on the total number of agents that play in the last two active rounds (in
equilibrium). Recall that an active round is a round in which at least one agent plays. The base case is already established
above.

Now we are ready for the inductive step. Define Sl as follows: No strategy profile (with at least two active rounds in equilib-
rium) that has l players in the last two active rounds can be a subgame perfect Nash equilibrium with the approval-voting rule (with
k > 1) for substitutes valuations.

Lemma A.5. Given that statements S2, . . . , Sl are true, for l < n, then Sl+1 is true.

Proof. By Lemma A.1 we can focus on the case k < l. For ease of presentation, refer to the penultimate active round as
round #1 and the last active round as round #2. Suppose i agents play in #1 and j in #2 (where i + j = l + 1). For now,
assume that i � 2. In all cases, consider the subgame (round #1) reached when all players are following the prescribed
strategy, and condition on having reached this subgame.

Consider the case that j = 1. Since k < i + j, we can assume i � k. The expected payoff to the agent in #2 is p2 = Pr(θ >
v(n− j)

v(n)
|θ >

v(n− j−i)
v(n)

) = δn− j+1+···+δn
δn− j−i+1+···+δn

. Deviating to #1 would bring this agent payoff k
i+1 . But, we have p2 = δn− j+1+···+δn

δn− j−i+1+···+δn
<

1
i+1 < k

i+1 and so a useful deviation, where the first inequality is by the substitutes property.
Now assume j > 1, along with i � 2.
Consider the case i < k and j > k. The expected payoff to an agent in #1 is p1 = Pr(θ � v(n− j)

v(n)
|θ >

v(n− j−i)
v(n)

) =
δn− j−i+1+···+δn− j
δn− j−i+1+···+δn

. Consider a deviation to a later round by such an agent. By the inductive hypothesis, this would be

a subgame with l or less players, and so all would play in the same round. The expected payoff would be k
j+1 p3

with p3 = Pr(θ >
v(n− j−1)

v(n)
|θ >

v(n− j−i)
v(n)

) = δn− j+···+δn
δn− j−i+1+···+δn

. For an SPNE we need p1 � k
j+1 p3 (Eq. (6)). The expected pay-

off to an agent in #2 is k
j p2. Consider a deviation to round #1 by such an agent. By the inductive hypothesis, the

remaining j − 1 � k agents would all play in the same round and so the expected payoff for a deviation would be
p4 = Pr(θ � v(n− j+1)

v(n)
|θ >

v(n− j−i)
v(n)

) = δn− j−i+1+···+δn− j+1
δn− j−i+1+···+δn

(since i + 1 � k). For an SPNE we need k
j p2 � p4 (Eq. (5)). Eq. (5) be-

comes
δn− j+1+···+δn

j � δn− j−i+1+···+δn− j+1
k , and so

δn− j+1+···+δn
j � δn− j−i+1+···+δn− j

k . Eq. (6) becomes
δn− j−i+1+···+δn− j

k � δn− j+···+δn
j+1 .

For any substitutes valuation,
δn− j+···+δn

j+1 >
δn− j+1+···+δn

j , so both Eqs. (5) and (6) cannot hold simultaneously.

Consider the case i < k and j = k. To preclude a deviation by an agent in #1 we again need p1 � k
j+1 p3 (Eq. (4)). But

now when considering a deviation by an agent in #2 to #1, we must also observe that it can also benefit from a vote
coming from the question closing when the remaining k − 1 agents answer. Moreover, when playing in #2 the agent doesn’t
need to compete for a vote. For an SPNE we need p2 � p4 + p5 · 1

i+1 (Eq. (3)), where p5 = Pr(θ >
v(n− j+1)

v(n)
|θ >

v(n− j−i)
v(n)

) =
δn− j+2+···+δn

δn− j−i+1+···+δn
. Eq. (3) becomes (δn− j+1 +· · ·+δn) � (δn− j−i+1 +· · ·+δn− j+1)+ (δn− j+2 +· · ·+δn) · 1

i+1 , and so (δn− j+1 +· · ·+
δn) � (δn− j−i+1 + · · · + δn− j) + (δn− j+1 + · · · + δn) · 1

i+1 , or in other words, (δn− j+1 + · · · + δn) · i
i+1 � δn− j−i+1 + · · · + δn− j .

Eq. (4) becomes δn− j−i+1 + · · · + δn− j � (δn− j + · · · + δn) · k
k+1 , and so δn− j−i+1 + · · · + δn− j � (δn− j+1 + · · · + δn) · k

k+1 .

Observing that i < k and so i
i+1 < k

k+1 we see that Eqs. (3) and (4) cannot hold simultaneously.

Consider the case i < k and j < k, still with k < i + j. Now, the expected payoff to an agent in #1 is p1 + p2 · k− j
i

(recognizing that the agent can compete for votes in the event that the question closes in #2), and to preclude a useful
deviation to a later round by an agent in #1, we require p1 + p2 · k− j

i � p3 (Eq. (1)). By similar arguments to above,

we also require p2 � p4 + p5 · k− j+1 (Eq. (2)) to preclude a useful deviation by an agent in #2 to #1. Eq. (1) becomes
i+1
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(δn− j−i+1 + · · · + δn− j) + (δn− j+1 + · · · + δn) · k− j
i � δn− j + · · · + δn , and so δn− j−i+1 + · · · + δn− j > (δn− j+1 + · · · + δn) · i+ j−k

i .

Eq. (2) becomes δn− j+1 +· · ·+δn � (δn− j−i+1 +· · ·+δn− j+1)+(δn− j+2 +· · ·+δn) · k− j+1
i+1 , and so δn− j+1 +· · ·+δn > (δn− j−i+1 +

· · ·+ δn− j)+ (δn− j+1 +· · ·+ δn) · k− j+1
i+1 (since k < i + j), or in other words, (δn− j+1 +· · ·+ δn) · i+ j−k

i+1 > δn− j−i+1 +· · ·+ δn− j .
We have a contradiction, and Eqs. (1) and (2) cannot hold simultaneously.

Consider the case i � k and j > 1. The expected payoff to an agent in #2 is upper-bounded by p2 · k
j , since it is p2 when

j � k and p2 · k
j otherwise. By similar arguments to above, deviating to #1 will bring an agent at least p4 · k

i+1 , since in the

case where j � k the expected payoff is p4 · k
i+1 + p5 · k− j+1

i+1 . So, in order to preclude a useful deviation we at least need

p2 · k
j � p4 · k

i+1 , or in other words, (δn− j+1 +· · ·+δn) · k
j � (δn− j−i+1 +· · ·+δn− j+1) · k

i+1 . But
δn− j+1+···+δn

j <
δn− j−i+1+···+δn− j+1

i+1
for substitutes valuations, and so we have a contradiction.

Finally, when i = 1, Lemma A.6 tells us that this cannot be an SPNE. �
Lemma A.6. No strategy profile (with at least two active rounds in equilibrium) in which there is one player in the penultimate active
round and l players in the last active round can be an SPNE with the approval-voting rule (with k > 1) for any substitutes valuation
function, given that no strategy profile is an SPNE when there are either (a) at most l players in the last two active rounds, or (b) exactly
l + 1 players in the last two active rounds with at least two players in the penultimate active round.

Proof. Let i be the player who participates in the penultimate active round. We will establish this via strong induction
on the number of rounds before T where agent i plays. The expected payoff is conditioned throughout on reaching the
penultimate active round. Terms p1, p2, p4 and p5 are as defined in the proof of Lemma 3.6.

Base case: No strategy profile with at least two active rounds in equilibrium in which there is one player in the penulti-
mate active round and this round is in period T − 1 can be an SPNE. Let j denote the number of players in the last active
round. By Lemma A.1 we can assume j � k. For j > k we have expected payoff of p1 and p2 · k

j to an agent in #1 and

#2 respectively. To preclude a deviation by an agent in #2 to #1 we need p2 · k
j � p4. For an agent deviating from #1 to

round T , we need p1 � k
j+1 . The first equation becomes: ( j + 1 − k) · δn− j � (δn− j+1 + · · · + δn) · k and the second becomes

(δn− j+1 + · · · + δn) · k � j · (δn− j + δn− j+1), which cannot hold simultaneously.
For j = k, we have expected payoff of p1 and p2 to an agent in #1 and #2 respectively. To prevent a deviation by an

agent in #2 to #1 we need p2 � p4 + p5 · 1
i+1 . For an agent deviating from #1 to round T , her expected payoff becomes

k
k+1 , and to preclude a deviation we need p1 � k

k+1 (Eq. (7)). Then, Eq. (8) is the same as δn− j � (δn− j+2 + · · · + δn) · k−2
k−1 .

Eq. (7) becomes δn− j � (δn− j + · · · + δn) · k
k+1 , and it is impossible for both Eqs. (7) and (8) to hold simultaneously.

Inductive hypothesis: No strategy profile (with at least two active rounds in equilibrium) in which there is one player in
the penultimate active round and this round is r + 1 periods before T can be an SPNE. Again, assume w.l.o.g. that j � k.
Consider what happens when the player in the penultimate active round deviates and goes later. By assumption (a) in the
statement of the lemma we know that there can be at most two active rounds in the resulting subgame, because otherwise
the last two active rounds would include l or less players. Then, by the inductive case for r periods to go, and by assumption
(b) in the statement of the lemma, the only SPNE in the subgame following the deviation to a later round involves all players
playing in the same round. Then, by the same analysis as for the base case, either the player in the penultimate active round
can profitably deviate later or a player in the last active round can profitably deviate to the penultimate active round. �
A.2. Proportional-share rule

Theorem 3.10. All agents still to play will play in the same round in the equilibrium play in every SPNE of every subgame under the
proportional-share rule for any additive complements valuations.

This result is established via strong induction on the total number of agents that play in the last two active rounds (in
equilibrium).

Lemma A.7. No strategy profile (with at least two active rounds in equilibrium) that has exactly two players in the last two active
rounds can be a subgame perfect Nash equilibrium under the proportional-share rule for any additive complements valuation function.

Proof. Consider the subgame corresponding to the penultimate active round. The expected payoff (conditioned on reaching
this subgame) of an agent in the last active round is Pr(θ >

v(n− j)
v(n)

|θ >
v(n− j−i)

v(n)
) · v(n)−v(n−1)

v(n)
= v(n)−v(n−1)

v(n)−v(n−2)
v(n)−v(n−1)

v(n)
. By

deviating to the penultimate active round, this player’s expected payoff becomes v(n)−v(n−2)
v(n)−v(n−2)

v(n)−v(n−2)
2v(n)

. In order for this to

be an equilibrium, we need: (v(n)−v(n−1))2

v(n)(v(n)−v(n−2))
� (v(n)−v(n−2))2

2v(n)(v(n)−v(n−2))
, which is equivalent for additive complements to: 4(2n)2 �

(2n + 2(n − 1))2 or 0 � 2n2 − 4n + 1. The right-hand side is greater than 0 for all n > 2 since the roots of 2n2 − 4n + 1 are
≈0.3,1.7. Therefore, the player in the last active round can profitably deviate. �
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Now we are ready for the inductive step. Define Sl as follows: No strategy profile (with at least two active rounds in equilib-
rium) that has exactly l players in the last two active rounds can be a subgame perfect Nash equilibrium under the proportional-share
rule for any additive complements valuations.

Lemma A.8. Given that statements S2, . . . , Sl are true for l < n, then Sl+1 is true.

Proof. For ease of presentation, refer to the penultimate active round as round #1 and the last active round as round #2.
Suppose i agents play in #1 and j in #2 (where i + j = l + 1). For now, assume that i � 2. In all cases, consider the subgame
(round #1) reached when all players are following the prescribed strategy, and condition on having reached this subgame.

First assume that i > 1. The expected payoff to an agent in round #1 is p1 · v(n− j)−v(n− j−i)
i·v(n− j) + p2 · v(n− j)−v(n− j−i)

i·v(n)
, where

p1 = Pr(θ � v(n− j)
v(n)

|θ >
v(n− j−i)

v(n)
) = v(n− j)−v(n− j−i)

v(n)−v(n− j−i) and p2 = Pr(θ >
v(n− j)

v(n)
|θ >

v(n− j−i)
v(n)

) = v(n)−v(n− j)
v(n)−v(n− j−i) . Consider a devia-

tion to a later round by such an agent. By the inductive hypothesis, this would be a subgame with l or less players, and
so all would play in the same round. Therefore, the expected payoff for such a deviation would be p3 · v(n)−v(n− j−1)

( j+1)v(n)
and

p3 = Pr(θ >
v(n− j−1)

v(n)
|θ >

v(n− j−i)
v(n)

) = v(n)−v(n− j−1)
v(n)−v(n− j−i) . The expected payoff to an agent in round #2 is p2 · v(n)−v(n− j)

j·v(n)
. Consider

a deviation to round #1 by such an agent. By the inductive hypothesis, the remaining j − 1 � l players would all play in the
same round and so the expected payoff for a deviation would be p4 · v(n− j+1)−v(n− j−i)

(i+1)v(n− j+1)
+ p5 · v(n− j+1)−v(n− j−i)

(i+1)v(n)
, where p4 =

Pr(θ � v(n− j+1)
v(n)

|θ >
v(n− j−i)

v(n)
) = v(n− j+1)−v(n− j−i)

v(n)−v(n− j−i) and p5 = Pr(θ >
v(n− j+1)

v(n)
|θ >

v(n− j−i)
v(n)

) = v(n)−v(n− j+1)
v(n)−v(n− j−i) . For an SPNE we

require v(n− j)−v(n− j−i)
v(n)−v(n− j−i) · v(n− j)−v(n− j−i)

i·v(n− j) + v(n)−v(n− j)
v(n)−v(n− j−i) · v(n− j)−v(n− j−i)

i·v(n)
� (v(n)−v(n− j−1))2

( j+1)v(n)(v(n)−v(n− j−i)) and (v(n)−v(n− j))2

j·v(n)(v(n)−v(n− j−i)) �
v(n− j+1)−v(n− j−i)

v(n)−v(n− j−i) · v(n− j+1)−v(n− j−i)
(i+1)v(n− j+1)

+ v(n)−v(n− j+1)
v(n)−v(n− j−i) · v(n− j+1)−v(n− j−i)

(i+1)v(n)
. Therefore, for an SPNE, we know that v(n− j)−v(n− j−i)

i ·
(2 − v(n− j−i)

v(n− j) − v(n− j)
v(n)

)− v(n− j+1)−v(n− j−i)
i+1 · (2 − v(n− j−i)

v(n− j+1)
− v(n− j+1)

v(n)
) � (v(n)−v(n− j−1))2

( j+1)(v(n))
− (v(n)−v(n− j))2

j(v(n))
. In order to establish

a contradiction, we show that this equation can never hold.
First, we observe that for additive complements, we have v(n− j)−v(n− j−i)

i · (2− v(n− j−i)
v(n− j) − v(n− j)

v(n)
)− v(n− j+1)−v(n− j−i)

i+1 · (2−
v(n− j−i)
v(n− j+1)

− v(n− j+1)
v(n)

) <
v(n− j)−v(n− j−i)

i · (2− v(n− j)
v(n)

)− v(n− j+1)−v(n− j−i)
i+1 · (2− v(n− j+1)

v(n)
). For this, we need v(n− j+1)−v(n− j−i)

(i+1)v(n− j+1)
<

v(n− j)−v(n− j−i)
i·v(n− j) . By additive complements, we require 2(n− j+1)−i

(n− j+1)(n− j+2)
<

2(n− j)−i+1
(n− j)(n− j+1)

, which is equivalent to i+2
n− j+2 > i−1

n− j .

Now, we have i+2
n− j+2 � i

n− j > i−1
n− j , since i � n − j. Based on this, it is sufficient for a contradiction to establish

v(n− j)−v(n− j−i)
i · (2 − v(n− j)

v(n)
) − v(n− j+1)−v(n− j−i)

i+1 · (2 − v(n− j+1)
v(n)

) <
(v(n)−v(n− j−1))2

( j+1)(v(n))
− (v(n)−v(n− j))2

j(v(n))
. This is equivalent to:

v(n− j)−v(n− j−i)
i · (2v(n) − v(n − j)) − v(n− j+1)−v(n− j−i)

i+1 · (2v(n) − v(n − j + 1)) <
(v(n)−v(n− j−1))2

( j+1)
− (v(n)−v(n− j))2

j .
Note that the following identities hold for additive complements:

v(n − j) − v(n − j − i)

i
· (2v(n) − v(n − j)

) = (2n − 2 j − i + 1)
(
2n(n + 1) − (n − j)(n − j + 1)

)
,

v(n − j + 1) − v(n − j − i)

i + 1
· (2v(n) − v(n − j + 1)

) = (2n − 2 j − i + 2)
(
2n(n + 1) − (n − j + 1)(n − j + 2)

)
,

(v(n) − v(n − j))2

j
= j(2n − j + 1)2,

(v(n) − v(n − j − 1))2

j + 1
= ( j + 1)(2n − j)2.

Therefore we write: (v(n)−v(n− j−1))2

( j+1)
− (v(n)−v(n− j))2

j = ( j + 1)(2n − j)2 − j(2n − j + 1)2 = 4(n − j)2 − j( j + 1). And we can

write: v(n− j)−v(n− j−i)
i · (2v(n)− v(n− j))− v(n− j+1)−v(n− j−i)

i+1 · (2v(n)− v(n− j +1)) = (2n−2 j − i +1)(2n(n+1)− (n− j)(n−
j +1))− (2n −2 j − i +2)(2n(n +1)− (n − j +1)(n − j +2)) = 2(2n −2 j − i +1)(n − j +1)−2n(n +1)+ (n − j +1)(n − j +2).
Left to prove is

2(2n − 2 j − i + 1)(n − j + 1) − 2n(n + 1) + (n − j + 1)(n − j + 2) < 4(n − j)2 − j( j + 1). (1)

The LHS is maximized for i = 1, and substituting for this it suffices to show 4(n − j)2 + 4(n − j)+ (n − j + 1)(n − j + 2)−
2n(n + 1) < 4(n − j)2 − j( j + 1), or in other words: j( j + 1) + 4(n − j) + (n − j + 1)(n − j + 2) − 2n(n + 1) < 0, which is
equivalent to 2( j − 1)2 − 2 j(n + 1) < n2 − 5n. Note that the LHS is negative for all values of i and n since j � 1, and the
RHS is non-negative for n � 5. Therefore we know that this equation holds for all n � 5 and all i + j � n. When n = 4 this
equation becomes, 2( j − 1)2 − 10 j < −4 or 2 j2 − 14 j + 6 < 0. 2 j2 − 14 j + 6 is less than 0 for all 1 � j � 3. When n = 3,
this equation becomes 2 j2 − 12 j + 8 < 0. 2 j2 − 12 j + 8 is less than 0 for all 1 � j � 2. Therefore we have established the
desired result.

Finally, when i = 1, Lemma A.9 tells us that this cannot be an SPNE. �



474 S. Jain et al. / Games and Economic Behavior 86 (2014) 458–474
Lemma A.9. No strategy profile (with at least two active rounds in equilibrium) in which there is one player in the penultimate active
round and l players in the last active round can be an SPNE with the proportional-share rule for any additive complements valuation
function, given that no strategy profile is an SPNE when there are either (a) at most l players in the last two active rounds, or (b) exactly
l + 1 players in the last two active rounds with at least two players in the penultimate active round.

Proof. Let i be the player who participates in the penultimate active round. We will establish this via strong induction
on the number of rounds before T where agent i plays. The expected payoff is conditioned throughout on reaching the
penultimate active round.

Base case: No strategy profile with at least two active rounds in equilibrium in which there is one player in the penulti-
mate active round and this round is in period T − 1 can be an SPNE. Let j denote the number of players in the last active
round. Because we are focused on rounds T − 1 and T then the same analysis as was used for the i > 1 case in the proof of
Lemma A.8 is valid here. Either the agent in the penultimate active round can usefully deviate later (in which case it nec-
essarily plays in the same round as the other players since it plays in round T ), or an agent in round T can usefully deviate
and play in round T − 1 with the singleton agent. For this, it is sufficient to note that the proof of Lemma A.8 establishes

that: v(n− j)−v(n− j−i)
i · (2 − v(n− j−i)

v(n− j) − v(n− j)
v(n)

)− v(n− j+1)−v(n− j−i)
i+1 · (2 − v(n− j−i)

v(n− j+1)
− v(n− j+1)

v(n)
) <

(v(n)−v(n− j−1))2

( j+1)(v(n))
− (v(n)−v(n− j))2

j(v(n))

for all i, j, n such that i, j � 1 and i + j � n.
Inductive hypothesis: No strategy profile (with at least two active rounds in equilibrium) in which there is one player

in the penultimate active round and this round is r + 1 periods before T can be an SPNE. Consider what happens when
the player in the penultimate active round deviates and goes later. By assumption (a) in the statement of the lemma we
know that there can be at most two active rounds in the resulting subgame, because otherwise the last two active rounds
would include l or less players. Then, by the inductive case for r periods to go, and by assumption (b) in the statement of
the lemma, the only SPNE in the subgame following the deviation to a later round involves all players playing in the same
round. Then, by the same analysis as for the base case, either the player in the penultimate active round can profitably
deviate later or a player in the last active round can profitably deviate to the penultimate active round. �
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