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Abstract

Payments for ecosystem services (PES) offer compensation
to landholders to preserve instead of develop their land, such
that everyone benefits from the positive externalities such as
clean air and fresh water. Ideally, payment models should
be designed to maximize the total societal benefit of PES,
i.e., the positive externalities minus the foregone development
turnovers for landholders. Optimization is complicated by
complementarity effects, which create additional value when
land is preserved together. The combinatorial problem size
render existing approaches intractable. Assuming knowledge
of landholders’ costs from an auction mechanism, we intro-
duce a novel graph representation for PES, in which nodes
hold landholder costs and preservation values, and edges
represent complementarities. We offer a graph-search algo-
rithm to find near-optimal preservation schemes in polyno-
mial time, recuperating up to 85% of optimal preservation.
We expect such algorithms to become a reliable and flexible
tool for dynamic decision-making for PES.

1 Introduction
When a landholder owns a plot of forest and cuts down
the trees for timber, she benefits from the financial gain of
the cost of timber. If she instead decides to leave the for-
est intact, she then foregoes money the timber would have
fetched, but instead benefits from improved air and water
quality, increased biodiversity, and reduced climate change
(Stein et al. 2009). Everyone else in society receives these
benefits, too. These are the positive externalities of pre-
served forests, which unfortunately come with no economic
gain for the landholder. Further ecosystem services include
water and biodiversity, which, together with forestry, are ex-
amples of renewable natural capital. The cumulative value
of the world’s ecosystem services are enormous, providing
an estimated US$33 trillion per year (Costanza et al. 1997).

Payments for ecosystem services (PES) remedy this eco-
nomic incentive issue by offering payments to landholders
for taking environmentally-friendly actions such as preserv-
ing forests, reducing use of pesticides, or eliminating toxic
emissions. Such payments offer economic compensation for
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Figure 1: A forest in Costa Rica, where payments for ecosys-
tem services have been implemented since the nation-wide
Forest Law of 1996 (Wallbott, Siciliano, and Lederer 2019)

the positive externalities provided by these natural capital
stocks, thereby altering potentially environmentally harmful
behavior of landholders. Without external intervention, the
situation is similar to the tragedy of the commons (Hardin
1968), for which well-known regulatory mechanisms exist
(Ostrom 1990). However, in shared commons, the members
share the positive and negative (economic) consequences
of sustainable or unsustainable usage. By contrast, in PES,
a multitude of private landholders individually affect non-
monetary positive externalities for everyone, while optimiz-
ing their own economic situation. As a consequence, PES
uses payments as behavioral incentives rather than regula-
tion.

One particular challenge with PES allocation is the pres-
ence of complementarities, in which natural capital (such as
uncut forest cover) has greater value when left untouched in
large, contiguous blocks of land. For instance, contiguous
land provides more territory for the movement of wildlife
(Crooks and Sanjayan 2006; Dilkina et al. 2017). It may be
the case that the cost of preservation for a set of individual
parcels of land is higher than the societal benefits, but when
combined with other parcels, complementarity effects ren-
der the combination profitable. As a consequence, a greedy
budget allocation mechanism, which picks parcels of land
ordered by their individual net values, does not necessarily



Figure 2: A novel framework to represent and optimize pay-
ment for ecosystem services programs for given parcels of
land and complementarities among them. (A) Our graph
representation, in which nodes represent parcels of land of
preservation cost c and value w, and edges represent com-
plementarity gains e for parcels that are preserved together.
(B) A previous tabular representation that cannot assign
complementarities to specific duos of parcels that are pre-
served together (Polasky et al. 2014). Cost is represented by
the top number, value by the leftmost bottom number, and
cumulative value plus complementarities for 1, 2, 3, ... con-
nected parcels by the following bottom numbers. (A) and (B)
represent the same parcels of land, whereby our approach
(A) is more specific in the way it can describe complemen-
tarities.

yield the highest overall value. Instead, more complex opti-
mization schemes must be applied across the landscape of
all possible combinations of parcels.

To address these limitations, we introduce a novel graph-
based model to represent and optimize PES programs (Fig-
ure 2A). A key advantage of our new graph representation
is that we are now able to leverage a suite of graph-traversal
algorithms, adapted to this domain, to better optimize vari-
ous payment schemes. Many graph-traversal algorithms are
computationally efficient, and some also provide provable
bounds on the quality of achievable solutions.

Assuming knowledge of the landholders’ cost and societal
benefit of preserving the land, we aim to reduce the com-
putational complexity of finding near-optimal sets of land
parcels while incurring only bounded losses in total societal
value from PES. Our results include a performance evalua-
tion of several hand-picked and customized graph-traversal
algorithms against the exhaustive search, which we ran on
our new graph representation of PES. We see our work as
an important contribution toward high-performance near-
optimal PES that can be employed flexibly and dynamically,
as budgetary constraints or changes in landholders and their
evaluations require. For example, the merging of two plots
of land into one would simply combine those nodes, and ad-
ditional plots of land can be easily added or removed. Dis-

tinguishing ourselves further from past work (Jayachandran
et al. 2017), we hope that future studies on and implemen-
tations of PES take landholder costs and complementarity
effects into account, and assign budgets as optimally as com-
putational constraints allow.

2 Background
PES programs are widely implemented around the world by
governments and non-governmental organizations (NGOs)
alike. There are over 550 PES programs globally with an
estimated US$36–42 billion in annual transactions (Salz-
man et al. 2018). For example, the United Nations REDD
program works in over 65 countries, aiming to reduce
carbon emissions by providing payments to reduce defor-
estation while promoting sustainable development (Cerbu,
Swallow, and Thompson 2011). There has been significant
literature from the perspective of environmental manage-
ment to demonstrate the effectiveness of PES programs.
For instance, a randomized controlled trial conducted in
Uganda demonstrated that villages where a PES program
was implemented had only 4.2% decline in tree cover af-
ter two years compared to 9.1% in control villages (Jay-
achandran et al. 2017). In addition to providing more sus-
tainable ecosystems, PES programs have also been shown
to provide broader societal benefits by strengthening social
relationships and a sense of community (Alix-Garcia et al.
2018).

Ecosystem services encompass water, biodiversity, and
forestry, which are examples of renewable natural capital.
The challenge in renewable natural capital markets is the
presence of externalities, both positive and negative. Market
design can be used to address these externalities. Specific
challenges with renewable natural capital markets (com-
pared to other capital markets) are (a) heterogeneity, (b) high
cost of monitoring and transactions, and (c) complementari-
ties (Teytelboym 2019). With complementarities, the chal-
lenge is that natural capital (such as uncut forest cover)
has greater value when left untouched in large, contiguous
blocks of land, for instance by providing more territory and
movement for wildlife (Crooks and Sanjayan 2006). Similar
principles have been applied to design wildlife corridors, of-
fering continuous paths between animal habitats (Dilkina et
al. 2017).

There are significant ecological benefits from strategically
selecting parcels of land to conserve. The cost of conser-
vation may vary drastically for a single square kilometer
of land, up to seven orders of magnitude (Balmford et al.
2003), enabling an agency to preserve much greater ecolog-
ical value for the same amount of cost. They compute con-
servation benefit in terms of wilderness value, areal extent,
and wildlife density. Naidoo et al. (2006) show that consid-
ering the economic cost and ecological benefits in conserva-
tion planning yields greater ecological gain under a limited
budget.

Among recent efforts, one seminal piece of work ad-
dressed such implementation of optimal PES as a two-stage
procedure (Polasky et al. 2014), focusing on the problem
of information asymmetry to use a strategy-proof auction



to learn the cost of conservation for landholders. The bene-
fits of preservation and complementarities are assumed to be
known. In the first step, landholders bid a price for conser-
vation of their parcels in a Vickrey–Clarke–Groves (VCG)
auction. The second step uses those true prices for conser-
vation and performs an exhaustive search over all possi-
ble combinations of land parcels to find the optimal set of
land parcels, whose preservation yields the highest societal
benefit. A key limitation of this approach is computational
tractability, since the number of combinations scales as 2N

with the number of parcels N.
We illustrate this limitation as follows. Compared to a pre-

vious study (Jayachandran et al. 2017) which studied 121
villages, 60 of which received payments for conserving land,
let’s assume we have N = 80 landholders and a supercom-
puter capable of 1015 floating-point operations per second
(FLOPS). Let’s further assume that the number of FLOPS
to evaluate a single combination is a constant c and gen-
erously assign c = 1. The computer would require more
than (280/1015)/(3600 · 24 · 365) ≡ 38y to find the optimal
solution, and this time would double with each additional
landholder. Consequently, an exhaustive search may not be
tractable, especially if PES is considered a continuous long-
term effort. Over time, new optimal budget allocations may
have to be recomputed: for instance, after changes to PES
budgets, landholder costs, and societal values, or additions
and removals of parcels of land. In addition, complemen-
tarities might depend on the ecosystem goal, e.g., improved
air may have lower complementarities between neighboring
parcels of land than movement of wildlife. In the current ap-
proach, a cost comparison between such goals would require
a costly recomputation of the entire optimal budget alloca-
tion.

Other related work have modeled the problem of select-
ing reserve sites to preserve suitable habitat for the greatest
number of species as a maximal covering problem (Church,
Stoms, and Davis 1996). However, computational tractabil-
ity is again a problem, as their integer linear programming
solution formulation is NP-hard, and they do not consider
complementarity.

Overall, past work has indicated that PES is an ef-
fective strategy to preserve the environment by combat-
ing deforestation. The challenge is to determine a pay-
ment scheme across many landholders that maximizes so-
cial welfare, while accounting for complementarities. Ex-
isting approaches are computationally intractable, and of-
ten neglect complementarities. In this work, we remedy both
challenges.

3 Graph-based model
Due to the computational intractability of computing an op-
timal solution directly, we propose formulating the problem
as a graph. A graph-based model enables us to neatly ac-
count for complementarity as the value added from the in-
clusion of mutually beneficial parcels. It also enables us to
incorporate for spatial relationships, which are an essential
characteristic of land plots.

Suppose we have N parcels of land and a budget of B. Let
ci ≥ 0 be the value to the landholder of parcel i. This cor-

responds with, for example, the opportunity cost they incur
according to the potential profit from developing the land.
Let wi ≥ 0 be the societal benefit, determined by the value
of the ecosystem services provided by that parcel of land,
perhaps measured in terms of carbon offsets provided by the
forest cover. Finally, let ei j ≥ 0 be the complementarity gain
of conserving both parcels i and j.

Each parcel of land i is represented as one node, which
stores the cost ci to the landholder and the benefit to soci-
ety wi of preserving that parcel. We include edges between
parcels of land whose mutual preservation would offer com-
plementarity benefits. The weight of the edge ei j represents
the complementarity gain if both parcels i and j are pre-
served. Our graph representation is well-suited for the spa-
tial nature of land preservation. For example, edges may be
added between all adjacent land parcels. Note that this graph
representation is flexible to miscellaneously shaped parcels;
the land does not have to be divided into a grid. It also al-
lows for simpler visualizations and insertion/deletion of new
parcels compared to the tabular format (Figure 2B) in previ-
ous work (Polasky et al. 2014).

While previous work (Polasky et al. 2014) modelled com-
plementarities for a given parcel as additive gains per num-
ber of adjacent conserved parcels (Figure 2B), our PES rep-
resentation is more comprehensive since it allows to attribute
such gains to specific connected parcels. Our representation
is also more realistic, as neighboring parcels should not be
treated equally. For example, conserving a neighboring par-
cel containing a water source will offer greater complemen-
tarity benefits than conserving a neighboring parcel that has
recently experienced a wildfire. The graph in Figure 2A rep-
resents one exemplary realization recovered from the more
general PES representation in Figure 2B (reroute B2 to B4
and A4 to B3 to see another valid realization).

4 Graph-based algorithms
We introduce the following five algorithms to determine a
payment scheme for PES. We compare them to the optimal
solution, which maximizes the net social value (benefit mi-
nus cost) for the entire set of land parcels. We also discuss
properties of the algorithms, such as their time complexi-
ties, and real world-situations in which they might be es-
pecially suitable. Finally, we present our near-optimal algo-
rithm, GRAPES.

4.1 Baseline algorithms
We use the following naive and graph-based greedy algo-
rithms to compare against.

Brute-force optimal Our algorithmic implementation fol-
lows a bottom-up recursive approach to compute the optimal
solution as in (Polasky et al. 2014) by comparing all possi-
ble combinations of land preservations. The optimal solution
serves as a benchmark and theoretical upper bound for all
other algorithms we discuss subsequently. Under budgetary
constraints, we order all solutions according to optimality,
and select the highest ranked one that fits within the budget.

Recall that although this brute-force approach provides
the optimal solution, it is not scalable to larger graphs due



to the 2N possible combinations.

Naive flat rate In the absence of any optimization for PES,
and without knowledge of landholders’ individual costs, a
decision-maker might choose to offer the same flat-rate pay-
ment to every landholder. Any flat rate cannot, however, lead
to robust PES performances. A flat rate that is too low would
miss out on beneficial land parcels, while a flat rate that is
too high would waste financial resources by overpaying, also
limiting the total number of land parcels that can be pre-
served.

In our algorithmic implementation, we set the flat rate to
the mean of landholders’ costs. Any individual landholder
accepts a flat rate payment if it matches at least their cost c,
and their land parcel is preserved. Note that a naive flat rate
does not require any compute power.

This naive flat rate serves as a performance lower bound,
which promising near-optimal algorithms should consis-
tently beat.

Greedy node This greedy algorithm sorts nodes (i.e., land
parcels) by their potential, which we define as the societal
benefit w of the node plus the sum of all edges e adjacent
to that node (i.e., complementarities). The algorithm then
greedily adds nodes in decreasing order of potential until
the budget is exhausted.

Such node-potential-based optimization works well, if the
potential is in fact realized, i.e., if the neighboring nodes are
added to realize the complementarities. On the other hand,
this optimization might also result in dispersed individually
selected nodes, particularly in low-budget scenarios. How-
ever, in many real-world landscape scenarios, nodes of high
potential might indeed be neighboring, since connectivity
among parcels of land follows a gradient from low to high
due to physical constraints.

The greedy node algorithm has a time complexity of
O(N logN), where N is the number of nodes.

Greedy maximum spanning tree The greedy maximum
spanning tree prioritizes connectivity between nodes (i.e.,
contiguous stretches of land as would be useful for wildlife
habitats). We make four modifications to Prim’s algorithm
for minimum spanning trees. First, edge weights are negated
to transform from a minimum to a maximum spanning tree.
Second, negated node values are added to the edge weight
for consideration of candidate edges, i.e., a good edge to a
good next node includes both, good complementarity and
a valuable land parcel. Third, the final value of the maxi-
mum spanning tree is not its length, but the sum of all node
values plus the sum of the values of edges between those
nodes, including edges that are additional to the spanning
tree. Fourth, our algorithm re-initializes spanning trees in
non-tree nodes as long as budget is available, rather than ter-
minating once the first tree is built.

The greedy maximum spanning tree has a time complex-
ity of O(E logN), with E edges and N nodes.

Connected components A connected component of a
graph is a subgraph in which any two vertices are connected
by a path. For example, a fully connected graph has one

Algorithm 1: GRAPES: GRAph-based PES
1 Inputs: budget B, parcel costs c, benefits w,

complementarities e, and adjacency list adj
2 initialize dist(i) = ∞ for all i
3 initialize pred(i) = None for all i
4 s = argmini ci/wi // start node
5 dist(s) = cs/ws
6 for k = 1, . . . ,N −1 do
7 for i = 1, . . . ,N do
8 for j in adj(i) do
9 ratio = c j/(w j + ei j)

10 if dist(i)+ ratio < dist( j) then
11 dist( j) = dist(i)+ ratio
12 pred( j) = i

13 let selected be an empty set
14 let sortedDist be the keys i of dist, sorted in

ascending order of dist(i)
15 totalCost = 0
16 for i in sortedDist do
17 if cost+ ci ≤ B then
18 add i to selected
19 totalCost = totalCost+ ci

20 return selected

connected component, and a graph with V vertices and zero
edges has V connected components.

Discovering connected components in a graph helps us
maximize the benefit of complementarities. When we do not
include the entirety of a connected component, there exists
some edge (u,v) such that we pay the cost cu (w.l.o.g.) but
not the cost cv, and therefore get the benefit of wu but not
of the edge (u,v). We have already paid for a portion of the
cost of the edge, therefore paying the additional cost of cv
gives us the benefit not just of wv but also of euv.

We compute the connected components of a graph by run-
ning breadth-first search through the graph, noting a new
connected component whenever our queue is empty but
there are still unvisited nodes in the tree. From there, we
rank the connected components by highest social benefit per
currency spent. Iterating through the components in ranked
order, we then pay for each fully connected component we
have budget for. When we no longer have sufficient budget
for the entire component, we then compute the maximum
spanning tree on the component, picking the tree that maxi-
mizes our societal benefit.

The time complexity of DFS is O(N +E), and the maxi-
mum spanning tree subroutine has a worst-case complexity
of O(E logN), yielding O(N +E logN) total for max con-
nected components.

4.2 Near-optimal PES scheme
We provide our near-optimal algorithm, GRAph-based PES
(GRAPES), shown in Algorithm 1. We implement the
Bellman–Ford algorithm to compute the shortest path from a



Figure 3: Examples of random graphs. (Left) GN,p graph
with N = 8, p = 0.3. (Center) GN,m graph with N = 8,
m = 24. (Right) Grid graph with N = 8.

single source. The problem of finding a longest-weight sim-
ple path in a graph is NP-hard. Thus, we cannot directly ad-
dress the question of computing the path with the best value.
Instead, we seek to minimize the cost–benefit ratio ci/wi.
That is, we select the parcels that offer the most social ben-
efit for every dollar we spend, therefore finding the most ef-
ficient way to allocate our spending.

We initialize Bellman–Ford with the node that has the
lowest cost–benefit ratio, and then build the paths from
there, initializing all distances except the source to 0 and
then progressing through, iteratively selecting the best sub-
sequent node to add. Suppose we are evaluating whether to
relax the edge (u,v) given that node u is already in our set,
and we are considering the addition of v. The cost–benefit
ratio would be cv/(wv + euv). That is to say, when we add v,
we get the complementarity benefit of euv while only having
to pay the cost of v, given that u has already been accounted
for.

The time complexity of Bellman–Ford is worst-case
O(NE).

5 Experiments
5.1 Graph simulation
We generate three types of random graphs. First is an Erdős–
Rényi graph GN,p that produces a graph with N nodes with
p probability of edge creation between any two nodes. Sec-
ond is GN,m that produces a graph with N nodes and m to-
tal edges, placed randomly. Third is a grid-structured planar
graph, with the nodes arranged in a grid and each node with
degree up to 4. Note that this representation is flexible to
various shapes of parcels. Examples of each graph type are
shown in Figure 3.

5.2 Results
We show results of each algorithm in Figure 4. The y-axis
measures the value achieved by each algorithm as a percent-
age of the optimal value. The brute-force optimal approach,
clearly, is at 100%. Bellman–Ford achieves the otherwise
best performance, with a mean of 89.0% achieved of the op-
timal value and standard deviation of 22.7 across 30 trials on
a GN,p graph. It is followed by greedy node selection, with
a mean of 83.0% and stdev 19.5. Naive flat rate lags behind
with a mean of 52.0 and stdev 14.58. The large size of the er-
ror bars indicates volatility in the solutions, suggesting that
the worst-case performance may be considerably lower.

Figure 4 captures algorithm performance for a single fixed
budget of B = 30. Figure 5 shows the performances with

Figure 4: Experimental results, assessed as percentage
achieved of optimal performance averaged over 30 trials.
With graph structure GN,p with N = 15 nodes, probability
p = 0.3, and budget B = 30.

varying budget. All algorithms approach optimal as the bud-
get increases, with the exception of naive flat rate. This be-
havior is expected, because with a sufficiently high budget
the optimal solution is trivial, which is to simply purchase
every parcel of land. Observe that naive flat rate does not
achieve this optimal solution because it selects a fixed pay-
ment to offer to each landowner and pays as many landown-
ers as the budget permits. However, the fixed payment may
be less than the cost to some landowners, so the landowners
will never accept.

Bellman–Ford achieves the closest-to-optimal solution,
most notably in low-budget scenarios. Greedy node lags dur-
ing lower budgets, but catches up to Bellman–Ford with
higher budgets. The max connected component approach,
which relies on the maximal spanning tree algorithm as a
subroutine, reveals a performance that nearly matches that
of the maximal spanning tree. Although naive flat rate beats
three out of four of the more sophisticated algorithms with a
low budget, its performance is stagnant as budget rises.

Figure 6 shows the optimal value attainable at each bud-
get. In this case, full payment to all landowners is achieved
with a budget of around B = 70, with the increase in po-
tential value rising nearly linearly before plateauing at the
maximal value.

5.3 Discussion
The strong performance of Bellman–Ford can be attributed
to two key insights. First, the cost–benefit ratio must be con-
sidered, not simply the value of a node. Consider the follow-
ing simple example. We have three nodes, A, B, and C with
benefit 90, 60, 70 and cost 10, 1, 2. If we were to greed-
ily maximize value, we would select A to attain a value of
90− 10 = 80 for a cost 10. However, if we instead mini-
mize the cost–benefit ratio, we would prioritize B and C with
a ratio 1/60 and 1/35, which are lower than A with ratio
1/9. Thus, we attain a higher total value of 127 for a lower



Figure 5: Performance when varying the budget, assessed as
value of the mechanism averaged over 30 trials. With N = 15
nodes and p = 0.3 probability of adding a new edge.

cost of only 3. Second, connectivity must be prioritized, es-
pecially in low-budget scenarios to capitalize on the bene-
fits of complementarity. Bellman–Ford enforces connectiv-
ity, which is particularly valuable under very constrained
budgets. Other algorithms such as greedy node selection will
consider the added value of complementarity when greedily
selecting nodes, but do not require the paired node to be se-
lected as well, thus potentially losing out on benefits from
complementarity.

6 Conclusion
We introduced a novel graph-based framework to optimize
payments for ecosystem services. This framework opens the
door to investigating the suitability of a range of well-known
graph-traversal algorithms for optimization of PES. While
the optimal solution under budgets smaller than the cost to
preserve every land parcel can be ensured only by check-
ing every single combination of land parcels, we were al-
ready able to show in preliminary experiments that stan-
dard graph-traversal algorithms—with key problem-driven
modifications—can achieve near-optimal payment schemes.
Importantly, our algorithms scale well with the number of
land parcels and allow for efficient re-computation of PES
schemes in dynamic real-world scenarios, where preserva-
tion goals, budgets, landholders, and cost–benefit evalua-
tions may frequently change.

In a next step, the presented graph algorithms will be
analyzed more thoroughly, both in theory and simulation,
with the goal to characterize their worst-case, best-case, and
average-case performances. Given that, they can become a
reliable and predictable tool for PES. Our current results
already indicate two key ingredients for robust algorithms:
(1) taking into account both costs and benefits of nodes, e.g.,
by using a cost–benefit ratio; and (2) enforcing connectivity
to capitalize on complementarity, especially for low budgets
(see single-source shortest path algorithm).

Figure 6: Value of optimal solution as the budget changes.
If the budget surpasses the total cost to preserve all land
parcels, the total value cannot improve anymore.

We wish to emphasize two subtle differences between our
current framework and previous optimal PES (Polasky et al.
2014), which can be addressed in future work. First, previ-
ous work compensated landholders for their marginal con-
tributions to preservation value, including complementarity
effects, even if that compensation exceeded their preserva-
tion costs at large (Polasky et al. 2014). This was necessary
due to the nature of their strategy-proof auction mechanism
design, but hurts the available budget by potentially spend-
ing more money on land parcels than required. We would
be interested in investigating alternative mechanism designs
to reveal landholder costs, for which at least complementar-
ity effects do not have to be compensated. In this work, we
compensated landholders based on their true costs for sim-
plicity.

Second, our current framework is based on undirected
graphs. If node A and B are preserved together, a single
complementarity of value c may occur if A and B are con-
nected by an edge. An alternative framework might consider
directed graphs, offering a finer breakdown of complemen-
tarities. For instance, node A might get a complementarity
of x if node B is preserved, and node B might get a com-
plementarity of y if node A is preserved as well. In fact, this
alternative directed graph more closely resembles the tabu-
lar data structure from previous work (Polasky et al. 2014).
However, which scenario is more relevant to complementar-
ities in the real world needs to be further assessed.

Overall, we find that a graph-based approach to model
PES offers substantial promise, particularly due to its com-
putational tractability and ability to flexibly account for
complementarities. We hope this work lays a foundation to
design future algorithms to maximize the preservation of our
scarce natural resources under budget constraints.
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