
Learning Strategy-Aware Linear Classifiers

Yiling Chen
Harvard University

yiling@seas.harvard.edu

Yang Liu
UC Santa Cruz

yangliu@ucsc.edu

Chara Podimata
Harvard University

podimata@g.harvard.edu

Abstract

We address the question of repeatedly learning linear classifiers against agents
who are strategically trying to game the deployed classifiers, and we use the
Stackelberg regret to measure the performance of our algorithms. First, we show
that Stackelberg and external regret for the problem of strategic classification are
strongly incompatible: i.e., there exist worst-case scenarios, where any sequence
of actions providing sublinear external regret might result in linear Stackelberg re-
gret and vice versa. Second, we present a strategy-aware algorithm for minimizing
the Stackelberg regret for which we prove nearly matching upper and lower regret
bounds. Finally, we provide simulations to complement our theoretical analysis.
Our results advance the growing literature of learning from revealed preferences,
which has so far focused on “smoother” assumptions from the perspective of the
learner and the agents respectively.

1 Introduction

As Machine Learning (ML) algorithms become increasingly involved in real-life decision making,
the agents that they interact with tend to be neither stochastic nor adversarial. Rather, they are
strategic. For example, consider a college that wishes to deploy an ML algorithm to make admis-
sions decisions. Student candidates might try to manipulate their test scores in an effort to fool the
classifier. Or think about email spammers who are trying to manipulate their emails in an effort to
fool the ML classifier and land in the non-spam inboxes. Importantly, in both examples the agents
(students and spammers respectively) do not want to sabotage the classification algorithm only for
the sake of harming its performance. They merely want to game it for their own benefit. And this is
precisely what differentiates them from being fully adversarial.

Motivated by the problem of classifying spam emails, we focus on the problem of learning an un-
known linear classifier, when the training data come in an online fashion from strategic agents, who
can alter their feature vectors to game the classifier. We model the interplay between the learner and
the strategic agents1 as a repeated Stackelberg game over T timesteps. In a repeated Stackelberg
game, the learner (“leader”) commits to an action, and then, the agent (“follower”) best-responds to
it, i.e., reports something that maximizes his underlying utility. The learner’s goal is to minimize
her Stackelberg regret, which is the difference between her cumulative loss and the cumulative loss
of her best-fixed action in hindsight, had she given the agent the opportunity to best-respond to it.

Our Contributions.

• We study a general model of learning interaction in strategic classification settings where the
agents’ true datapoint remains hidden from the learner, the agents can misreport within a ball of
radius δ of their true datapoint (termed δ-bounded, myopically rational (δ-BMR) agents), and the
learner measures her performance using the binary loss. This model departs significantly from
the smooth utility and loss functions used so far for strategic classification (Sec. 2).

1We refer to the learner as a female (she/her/hers) and to the agents as male (he/his/him).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• We prove that in strategic classification settings against δ-BMR agents simultaneously achieving
sublinear external and Stackelberg regret is in general impossible (strong incompatibility) (i.e.,
application of standard no-external regret algorithms might be unhelpful (Sec. 3)).

• Taking advantage of the structure of the responses of δ-BMR agents while working in the dual
space of the learner, we propose an adaptive discretization algorithm (GRINDER), which uses
access to an oracle. GRINDER’s novelty is that it assumes no stochasticity for the adaptive
discretization (Sec. 4).

• We prove that the regret guarantees of GRINDER remain unchanged in order even when the
learner is given access to a noisy oracle, accommodating more settings in practice (Sec. 4).

• We prove nearly matching lower bounds for strategic classification against δ-BMR agents (Sec. 5).
• We provide simulations implementing GRINDER both for continuous and discrete action spaces,

and using both an accurate and an approximation oracle (Sec. 4.1).

Our Techniques.

• In order to prove the incompatibility results of the regret notions in strategic classification, we
present a formal framework, which may be of independent interest.

• To overcome the non-smooth utility and loss functions, we work on the dual space, which pro-
vides information about various regions of the learner’s action space, despite never observing the
agent’s true datapoint. These regions (polytopes) relate to the partitions that GRINDER creates.

• To deal with the learner’s action space being continuous (i.e., containing infinite actions), we use
the fact that all actions within a polytope share the same history of estimated losses. So, passing
information down to a recently partitioned polytope becomes a simple volume reweighting.

• To account for all the actions in the continuous action space, we present a formulation of the
standard EXP3 algorithm that takes advantage of the polytope partitioning process.

• For bounding the variance of our polytope-based loss estimator, we develop a polytope-based
variant of a well-known graph-theoretic lemma ([1, Lem. 5]), which has been crucial in the
analysis of online learning settings with feedback graphs. Such a variant is mandatory, since
direct application of [1, Lem. 5] in settings with continuous action spaces yields vacuous2 regret.

• We develop a generalization of standard techniques for proving regret lower bounds in strategic
settings, where the datapoints that the agents report change in response to the learner’s actions.

Related Work. Our work is primarily related to the literature on learning using data from strategic
sources (e.g., [15, 12, 30, 16, 13, 5, 6, 24, 8, 26, 27]). Our work is also related to learning in
Stackelberg Security Games (SSGs) ([23, 25, 7]) and especially, the work of Balcan et al. [3], who
study information theoretic sublinear Stackelberg regret3 algorithms for the learner. In SSGs, all
utilities are linear, a property not present in strategic classification against δ-BMR agents. Finally, our
work is related to the literature in online learning with partial (see [10, 32, 22]) and graph-structured
feedback [1, 14]. Adaptive discretization algorithms were studied for stochastic Lipschitz settings
in [21, 9], but in learning against δ-BMR agents, the loss is neither stochastic nor Lipschitz.

2 Model and Preliminaries

We use the spam email application as a running example to setup our model. Each agent has an
email that is either a spam or a non-spam. Given a classifier, the agent can alter his email to a
certain degree in order to bypass the email filter and have his email be classified as non-spam. Such
manipulation is costly. Each agent chooses a manipulation to maximize his overall utility.

Interaction Protocol. Let d ∈ N denote the dimension of the problem and A ⊆ [−1,+1]d+1 the
learner’s action space4. Actions α ∈ A correspond to hyperplanes, written in terms of their normal
vectors, and we assume that the (d+ 1)-th coordinate encodes information about the intercept. Let
X ⊆ ([0, 1]d, 1) the feature vector space, where by ([0, 1]d, 1) we denote the set of all (d + 1)-
dimensional vectors with values in [0, 1] in the first d dimensions and value 1 in the (d+ 1)-th. Each

2Due to the logarithmic dependence on the number of actions.
3Even though the formal definition of Stackelberg regret was only later introduced by Dong et al. [17].
4This is wlog, as the normal vector of any hyperplane can be normalized to lie in [−1, 1]d+1.

2

feature vector has an associated label y ∈ Y = {−1,+1}. Formally, the interaction protocol (which
repeats for t ∈ [T]) is given in Protocol 1, where by σt we denote the tuple (feature vector, label).

Protocol 1: Learner-Agent Interaction at Round t

1 Nature adversarially selects feature vector xt ∈ X ⊆ ([0, 1]d, 1). // agent’s original email
2 The learner chooses action αt ∈ A, and commits to it. // learner’s linear classifier
3 Agent observes αt and σt = (xt, yt), where yt ∈ Y . // yt = +1, if non-spam originally
4 Agent reports feature vector rt(αt, σt) ∈ X (potentially, rt(αt, σt) 6= xt). // altered email
5 The learner observes (rt(αt, σt), ŷt), where ŷt ∈ Y is the label of rt(αt, σt), and incurs binary loss

`(αt, rt(αt, σt), ŷt) = 1{sgn(ŷt · 〈αt, rt(αt, σt)〉) = −1}. // loss on altered email

Agents’ Behavior: δ-Bounded Myopically Rational. Drawing intuition from the email spam ex-
ample, we focus on agents who can alter their feature vector up to an extent in order to make their
email fool the classifier, and, if successful, they gain some value. The agent’s reported feature vector
rt(αt, σt) is the solution to the following constrained optimization problem5:

rt(αt, σt) = arg max
‖z−xt‖≤δ

ut(αt, z, σt)

where ut(·, ·, ·) is the agent’s underlying utility function, which is unknown to the learner. In words,
in choosing what to report, the agents are myopic (i.e., focus only on the current round t), rational
(i.e., maximize their utility), and bounded (i.e., misreport in a ball of radius δ around xt). In such
settings (e.g., email spam example), the agents derive no value if, by altering their feature vector
from xt to rt(αt), they also change yt. Indeed, a spammer (yt = −1) wishes to fool the learner’s
classifier, without actually having to change their email to be a non-spam one (ŷt = +1). Since
the agents are rational this means that the observed label by the learner is ŷt = yt and we only use
notation yt for the rest of the paper. We call such agents δ-Bounded Myopically Rational (δ-BMR)6.

Note that δ-BMR agents include (but are not limited to!) a broad class of rational agents for strategic
classification, like for example agents whose utility is defined as:

ut(αt, rt(αt, σt), σt) = δ′ · 1 {sgn(〈αt, rt(αt, σt)〉) = +1} − ‖xt − rt(αt, σt)‖2 (1)

where sgn(x) = +1 if x ≥ 0 and sgn(x) = −1 otherwise. According to the utility presented in
Eq. (1), the agents get a value of δ′ if he gets labeled as +1 and incurs a cost (i.e., time/resources
spent for altering the original xt) that is a metric. For this case, we have that δ ≤ δ′.

Model Comparison with Other Strategic Classification Works. Learning in strategic classifi-
cation settings was studied in an offline model by Hardt et al. [19], and subsequently, by Dong
et al. [17] in an online model. Similar to our model, in [19, 17] the ground truth label yt remains
unchanged even after the agent’s manipulation. Moreover, the work of Dong et al. [17] is orthog-
onal to ours in one key aspect: they find the appropriate conditions which can guarantee that the
best-response of an agent, written as a function of the learner’s action, is concave. As a result, in
their model the learner’s loss function becomes convex and well known online convex optimization
algorithms could be applied (e.g., [18, 11]) in conjunction with the mixture feedback that the learner
receives. The foundation of our work, however, is settings with less smooth utility and loss functions
for the agents and the learner respectively, where incompatibility issues arise. There has also been
recent interest in strategic classification settings where the agents by misreporting actually end up
changing their label yt [4, 31, 29]. These models are especially applicable in cases where in order
to alter their feature vector xt (e.g., qualifications for getting in college) the agents have to improve
their ground truth label (e.g., actually try to become a better candidate [34]). In contrast, in our work
we think of the misreports as “manipulations” that aim at gaming the system without altering yt.

3 Stackelberg versus External Regret

For what follows, let {αt}Tt=1 be the sequence of the learner’s actions in a repeated Stackelberg
game. The full proof of this section can be found in Appendix A.1, and Appendices A.2 and A.3 in-
clude detailed discussions around external and Stackelberg regret for learning in Stackelberg games.

5For simplicity, we denote rt(αt) = rt(αt, σt) when clear from context.
6Note that if the agents were adversarial, they would report r(αt) = argmax‖z−xt‖≤δ `(α, z, yt).

3

Definition 3.1 (External). R(T) =
∑
t∈[T] `(αt, rt(αt), yt)−minα?E∈A

∑
t∈[T] `(α

?
E , rt(αt), yt).

The external regret compares the cumulative loss from {αt}t∈[T] to the cumulative loss incurred by
the best-fixed action in hindsight, had learner not given the opportunity to the agents to best respond.

Definition 3.2 (Stackelberg). R(T) =
∑
t∈[T] `(αt, rt(αt), yt)−minα?∈A

∑
t∈[T] `(α

?, rt(α
?), yt).

h
x1

x2

h′

+1

+1

x4

x3rt = rt =

rt =

= rt

rt

rt

rt

rt

x2

x1

Figure 1: Black dots denote true
feature vectors. Axes x1, x2

correspond to the two features.
Dotted circles correspond to the
δ-bounded interval inside which
agents can misreport. Blue squares
correspond to misreports against
action h′ and red triangles to mis-
reports against action h.

Stackelberg regret [3, 17] compares the loss from {αt}t∈[T] to
the loss from the best-fixed action in hindsight, had learner
given the opportunity to the agents to best respond.

Theorem 3.3. There exists a repeated strategic classification
setting against a δ-BMR agent, where every action sequence
from the learner with sublinear external regret incurs linear
Stackelberg regret, and every action sequence for the learner
with sublinear Stackelberg regret incurs linear external regret.

Proof Sketch. We construct the following instance of an online
strategic classification setting against δ-BMR agents (pictori-
ally shown in Figure 1). Let the action space be A = {h, h′}
such that h = (1, 1,−1) and h′ = (0.5,−1, 0.25), and let
δ = 0.1. Nature draws feature vectors x1 = (0.4, 0.5, 1),x2 =
(0.6, 0.6, 1),x3 = (0.8, 0.9, 1),x4 = (0.65, 0.3, 1) with prob-
abilities p1 = 0.05, p2 = 0.15, p3 = 0.05, p4 = 0.75, and with
labels y1 = −1, y2 = −1, y3 = +1, y4 = +1. Note that these
original feature vectors are even separable by a margin! The
expected loss for each action α ∈ A corresponds to the number
of mistakes that the learner makes against rt(α), which in turn
depends on the probability with which nature drew each of the
feature vectors x1,x2,x3,x4, e.g., E[`(h, rt(h), yt)] = 0.2
because classifier h makes a mistake for points x1 and x2.
Analogously, E[`(h′, rt(h

′), yt)] = 0.25, E[`(h, rt(h
′), yt)] = 0.9 and E[`(h′, rt(h), yt)] = 0.05.

Every action sequence that yields a sublinear Stackelberg regret in this instance, must include action
h at least T − o(T) times (because E[`(h, rt(h), yt)] < E[`(h′, rt(h

′), yt)]), thus incurring cumu-
lative loss 0.2(T − o(T)) + 0.9o(T). For such sequences, because responses rt(h) appear at least
T −o(T) times, the best-fixed action in hindsight for the external regret is action h′, with cumulative
loss: 0.05(T − o(T)). This means that the external regret is at least 0.15T , i.e., linear. For the next
part of the proof, we show that if action h′ is played T − o(T) times, then, the external regret is sub-
linear. This is enough to prove our theorem, since in this case the Stackelberg regret is 0.05T , i.e.,
linear. If h′ is played T−o(T) times, then the cumulative loss incurred is 0.05o(T)+0.25(T−o(T))
and the best fixed action in hindsight for the external regret is also action h′ with a cumulative loss
0.25(T − o(T)) + 0.05o(T). In other words, the external regret in this case is sublinear. �

4 The GRINDER Algorithm

In this section, we present GRINDER, an algorithm that learns to adaptively partition the learner’s ac-
tion space according to the agent’s responses. To assist with the dense notation, we include notation
tables in Appendix B.1. Formally, we prove the following7 data-dependent performance guarantee.

Theorem 4.1. Given a finite horizon T the Stackelberg regret incurred by GRINDER (Algo. 2) is:

R(T) ≤ O

√√√√√T · log

T · λ (A)

λ
(
p
δ

)
 · log

 λ (A)

λ
(
p
δ

)

where by λ(A) we denote the Lebesgue measure of any measurable spaceA, and by p
δ

we denote the
polytope with the smallest Lebesgue measure that is induced by GRINDER after T rounds’ partition.

7Our actual bound is tigher, but harder to interpret without analyzing the algorithm.

4

α
β

γ

x1

x2

xt

rt(α)
2δ

δ

Figure 2: Agent’s action
space with axes x1, x2 corre-
sponding to features. xt is the
agent’s true feature vector and
rt(α) his misreport against α.
Actions α, β, γ comprise the
learner’s action set.

Inferring `(α, rt(α), yt) without Observing xt. We think of the
learner’s and the agent’s spaces as dual ones (Fig. 2), and focus on
the agent’s action space first. Since agents are δ-BMR, then, for fea-
ture vector xt the agent can only misreport within the ball of radius
δ centered around xt, denoted by Bδ(xt) (e.g., purple dotted circle
in Fig. 2). Since the learner observes rt(α) and knows that the agent
misreports in a ball of radius δ around xt (which remains unknown
to her), she knows that in the worst case the agent’s xt is found
within the ball of radius δ centered at rt(α). This means that the set
of all of the agent’s possible misreports against any committed ac-
tion α′ from the learner rt(α′) is the augmented 2δ ball (e.g., green
solid circle). Since yt is also observed by the learner, she can thus
infer her loss `(α′, rt(α′), yt) for any action α′ that has B2δ(rt(α))
fully in one of its halfspaces (e.g., actions β, γ in Fig. 2).

In the learner’s action space, actions α, β, γ are multidimensional
points, and this has a nice mathematical translation. An action γ has
B2δ(rt(α)) fully in one of its halfspaces, if its distance from rt(α) is more than 2δ. Alternatively
for actions h ∈ A such that:

|〈h, rt(α)〉|
‖h‖2

≤ 2δ ⇔ |〈h, rt(α)〉| ≤ 4
√
dδ

where the last inequality comes from the fact that A ⊆ [−1, 1]d+1, the learner cannot infer
`(h, rt(h)). But for all other actions γ in A, the learner can compute her loss `(h, rt(h)) precisely!
From that, we derive that the learner can partition her action space into the following polytopes:
upper polytopes Put , containing actions w ∈ A such that 〈w, rt(α)〉 ≥ 4

√
dδ and lower polytopes

P lt , containing actions w′ ∈ A such that 〈w′, rt(α)〉 ≤ −4
√
dδ. The distinction into the two sets

is helpful as one of them always assigns label +1 to the agent’s best-response, and the other always
assigns label −1. The sizes of Put and P lt depend on δ and {xt}Tt=1, but we omit these for the ease
of notation.

P lt(α)

Put (α)

α

βut (α)

βlt(α)

− 2δ
rt,1

− 2δ
rt,2

2δ
rt,1

2δ
rt,2

Figure 3: Polytope partition-
ing for d = 2. rt,1, rt,2 corre-
spond to the x1 and x2 coor-
dinates of rt(α).

Algorithm Overview. At each round t, GRINDER (Algo. 2) main-
tains a sequence of nested polytopes Pt, with P1 = {A} and de-
cides which action αt to play according to a two-stage sampling
process. We denote the resulting distribution by Dt, and by Pt and
ft(α) the associated probability and probability density function.

After the learner observes rt(αt), she computes two hyperplanes
with the same normal vector (rt(αt)) and symmetric intercepts
(±4
√
dδ). These boundary hyperplanes are defined as:

βut (αt) : ∀w ∈ A, 〈w, rt(αt)〉 = 4
√
dδ

βlt(αt) : ∀w ∈ A, 〈w, rt(αt)〉 = −4
√
dδ

and they split the learner’s action space into three regions; one for
which ∀w : 〈w, rt(αt)〉 ≥ 4

√
dδ, one for which 〈w, rt(αt)〉 ≤

−4
√
dδ and one for which |〈w, rt(αt)〉| ≤ 4

√
dδ (see Fig. 3).

Let H+(β), H−(β) denote the closed positive and negative halfspaces defined by hyperplane β for
intercept 4

√
dδ and −4

√
dδ respectively8. Slightly abusing notation, we say that polytope p ⊆

H+(β) if for all actions α contained in p it holds that α ∈ H+(β).

We define action αt’s upper and lower polytopes sets to be the sets of polytopes such that Put (αt) =
{p ⊆ Pt, p ⊆ H+(βut (αt))} and P lt(αt) = {p ⊆ Pt, p ⊆ H−(βlt(αt))} respectively. Defining
these sets is useful since they represent the subsets of the learner’s action space for which she can
infer ∀h : `(h, rt(h), yt) despite never observing xt! To be more precise for h ∈ Put (αt)

⋃
P lt(αt):

`(h, rt(h), yt) = 1{yt = −1} · 1 {h ∈ Put (αt)}+ 1 {yt = +1} · 1
{
h ∈ P lt(αt)

}
8i.e., α ∈ H+(β) if α ∈ A, 〈β, α〉 ≥ 4

√
dδ and similarly, α ∈ H−(β) if α ∈ A, 〈β, α〉 ≤ −4

√
dδ

5

Algorithm 2: GRINDER Algorithm for Strategic Classification
1 Initialize polytopes’ set: P0 = {A}.
2 Initialize polytope weights w1(p) = λ(p), p ∈ P0.
3 Tune learning and exploration rates η = γ ≤ 1/2, as specified in the analysis.
4 for t← 1 to T do
5 Compute ∀p ∈ Pt : πt(p) = (1− γ)qt(p) + γ λ(p)

λ(A) . // distribution over polytopes
/* Two-stage sampling: first, polytope, second, draw action from within. */

6 Select polytope pt ∼ πt from which you draw action αt ∼ Unif(pt) and commit to αt.
7 Observe the agent’s response (rt(αt), yt) to committed αt.

/* Space partitioning into smaller polytopes. Pt : current polytopes set. */
8 Define a new set of polytopes Pt+1 = Put+1(αt)

⋃
Pmt+1(αt)

⋃
P lt+1(αt), where:

9 for each polytope p ∈ Pt do
10 Add in Put+1(αt) the non-empty intersection p

⋂
H+(βut (αt)) // upper polytopes set

11 Add in P lt+1(αt) the non-empty intersection p
⋂
H−(βlt(αt)) // lower polytopes set

12 Add in Pmt+1(αt) the non-empty remainder of p. // middle polytopes set

13 Compute ˆ̀(αt, rt(αt), yt) = `(αt,rt(αt),yt)
Pin
t [αt]

. // loss estimator for chosen action

14 for each polytope p ∈ Pt+1 do
/* upper and lower polytopes get full information */

15 Compute ˆ̀(p, rt(p), yt) =
`(p,rt(p),yt)·1{p⊆Put+1(αt)

⋃
Plt+1(αt)}

Pin
t [p]

.
/* weight scaling with the Lebesgue measure of the polytope */

16 Update wt+1(p) = λ(p) exp
(
−η
∑t
τ=1

ˆ̀(p, rt(p), yt)
)

, qt+1(p) = wt+1(p)∑
p′∈Pt+1

wt+1(p′) .

The definition of the polytopes establishes that at each round the estimated loss within each polytope
is constant. If a polytope has not been further “grinded” by the algorithm, then the estimated loss
that was used to update the polytope has been the same within the actions of the polytope for each
time step! This observation explains the way the weights of the polytopes are updated by scaling
with the Lebesgue measure of each polytope. Due to the fact that the loss of all the points within a
polytope is the same, we slightly abuse notation and we use `(p, rt(p), yt) to denote the loss for any
action α ∈ p for round t, if the agent best-responded to it.

We next define the lower, upper, and middle σt-induced9 polytope sets as: P lt,σt = {α ∈ p, p ∈ Pt :
sdist(α,xt) ≤ −2δ}, Put,σt = {α ∈ p, p ∈ Pt : sdist(α,xt) ≥ 2δ}, and Pmt,σt = {α ∈ p, p ∈
Pt : |sdist(α,xt)| < 2δ}, where sdist(α,xt) = 〈α,xt〉/‖α‖2.

GRINDER uses access to what we call an in-oracle (Def. 4.2). Our main regret theorem is stated
for an accurate oracle, but we show that our regret guarantees still hold for approximation oracles
(Lem. B.7). Such oracles can be constructed in practice, as we show in Sec. 4.1.

Definition 4.2 (In-Oracle). We define the In-Oracle as a black-box algorithm, which takes as input
a polytope (resp. action) and returns the total in-probability for this polytope (resp. action):

Pin
t [p] =

∫
A
Pt
[{
p ⊆ H+ (βut (α′))

}⋃{
p ⊆ H−

(
βlt (α′)

)}]
dα′

We provide below the proof sketch for Thm 4.1. The full proof can be found in Appendix B. We
also note that the algorithm can be turned into one that does not assume knowledge of T or λ

(
p
δ

)
by using the standard doubling trick [2].

Proof Sketch of Thm 4.1. Using properties of the pdf, we first prove that ˆ̀(·, ·, ·) is an unbiased
estimator, and its variance is inversely dependent on quantity Pin

t [α]. Next, using the σt-induced
polytopes sets, we can bound the variance of our estimator (Lem. B.4) by making a novel connection

9These can only be computed if one has access to the agent’s true datapoint σt = (xt, yt). However, we
only use them in our analysis, and GRINDER does not require access to them.

6

with a graph theoretic lemma from the literature in online learning with feedback graphs ([1, Lem. 5],
also stated in Lem. B.5):

E
αt∼Dt

[
1

Pin
t [αt]

]
≤ 4 log

4λ (A) ·
∣∣Put,σt ∪ P lt,σt∣∣
γλ
(
p
δ

)
+ λ

(
Pmt,σt

)
To do so, we first expand the term Eαt∼Dt [1/Pin

t [αt]] as:

E
αt∼Dt

[
1

Pin
t [αt]

]
=

∫
A

ft(α)

Pin
t [α]

dα =

∫
⋃

(Put,σt∪P
l
t,σt

)

ft(α)

Pin
t [α]

dα︸ ︷︷ ︸
Q1

+

∫
⋃
Pmt,σt

ft(α)

Pin
t [α]

dα︸ ︷︷ ︸
Q2

(2)

Due to the fact that GRINDER uses conservative estimates of the true action space with
sdist(α,xt) ≤ δ, term Q2 can be upper bounded by λ(Pmt,σt). Upper bounding Q1 is signifi-
cantly more involved (Lem. B.4). First, observe that each of the actions in Put,σt ,P

l
t,σt gets updated

with probability 1 by any other action in the sets Put,σt ,P
l
t,σt . This is because for any of the actions

in Put,σt ,P
l
t,σt , the agent could not have possibly misreported. So, for all actions α ∈ Put,σt ∪ P

l
t,σt

we have that: Pin
t [α] ≥

∑
p∈Put,σt∪P

l
t,σt

πt(p). As a result, we can instead think about the set of

polytopes that belong in Put,σt and P lt,σt as forming a fully connected feedback graph. The lat-
ter, coupled with the fact that our exploration term makes sure that each polytope p is chosen with

probability at least λ(p)/λ(A) gives that: Q1 ≤ 4 log

(
4λ(A)·|Put,σt∪Plt,σt |

λ(p
δ
)·γ

)
.

Expressing everything in terms of polytopes rather than individual actions is critical in the previous
step, because applying [1, Lem. 5] on A, rather than Pt, gives vacuous regret upper bounds, due to
the logarithmic dependence in the number of nodes of the feedback graph, which is infinite for the
case ofA. The penultimate step of the proof (Lem. B.6) is a second order regret bound for GRINDER

on the estimated losses ˆ̀(·, ·), which should be viewed as the continuous variant of the standard
discrete-action second order regret bound for EXP3-type algorithms. In order to derive the bound
stated in Thm 4.1 we upper bound the total number of σt-induced polytopes with λ(A)/λ(p

δ
). �

The regret guarantee of GRINDER is preserved if instead of an accurate in-oracle it is provided an
ε-approximate one, where ε ≤ 1/

√
T (Lemma B.7). As we also validate in Sec. 4.1, in settings

where few points violate the margin between the +1 and the −1 labeled points such approximation
oracles do exist and are relatively easy to construct.

Computing the volume of polytopes is a #-P hard problem, so GRINDER should be viewed as an
information-theoretic result. However, if GRINDER is provided access to an efficient black-box
algorithm for computing the volume of a polytope, its runtime complexity is O(T d) (Lem. B.8).

4.1 Simulations

In this subsection we present our simulation results10. We build simulation datasets since in order
to evaluate the performance of our algorithms one needs to know the original datapoints xt. The
results of our simulations are presented in Fig. 4.

For the simulation, we run GRINDER against EXP3 for a horizon T = 1000, where each round was
repeated for 30 repetitions. The δ-BMR agents that we used are best-responding according to the
utility function of Eq. (1), and we studied 5 different values for δ: 0.05, 0.1, 0.15, 0.3, 0.5. The +1
labeled points are drawn from Gaussian distribution as xt ∼ (N (0.7, 0.3),N (0.7, 0.3)) and the
−1 labeled points are drawn from xt ∼ (N (0.4, 0.3),N (0.4, 0.3)). Thus we establish that for the
majority of the points there is a clear “margin” but there are few points that violate it (i.e., there
exists no perfect linear classifier).

EXP3 is always run with a fixed set of actions and always suffers a dependence on the different
actions (i.e., not δ). We then run GRINDER in the same fixed set of actions and with a continuous

10Our code is publicly available here: https://github.com/charapod/learn-strat-class

7

https://github.com/charapod/learn-strat-class

Figure 4: Performance of GRINDER vs. EXP3. In all cases, GRINDER outperforms EXP3. Solid lines
correspond to average regret/loss, and opaque bands correspond to 10th and 90th percentile. Left:
discrete action sets, accurate and regression oracle. Middle: Continuous action set for GRINDER
with δ = 0.05, 0.10, 0.15. Right: Continuous action set for GRINDER with δ = 0.05, 0.3, 0.5.

action set. For the discrete action set, we include the results for both the accurate and the regression-
based approximate oracle. We remark that if the action set is discrete, then GRINDER becomes
similar to standard online learning with feedback graph algorithms (see e.g., [1]), but the feedback
graph is built according to δ-BMR agents. In this case, the regret scales as O(a(G) log T), where
a(G) is the independence number of graph G.

For the continuous action set it is not possible to identify the best-fixed action in hindsight. As
a result, we report the cumulative loss. In Appendix D, we include additional simulations for a
different family of δ-BMR agents11, and different distributions of labels.

In order to build the approximation oracle we used past data and we trained a logistic regression
model for each polytope, learning the probability that it is updated. Our model has “recency bias”
and gives more weight to more recent datapoints. We expect that for more accurate oracles, our
results are strengthened, as proved by our theoretical bounds.

Validating our theoretical results, GRINDER outperforms the benchmark, despite the fact that we use
an approximation oracle. We also see that in the discrete action set, where an accurate oracle can be
constructed, GRINDER performs much better than the regression oracle. As expected, GRINDER’s
performance becomes worse as the power of the adversary increases (i.e., as δ grows larger).

Figure 5: Performance of
GRINDER vs. BGD.

Why not compare GRINDER with a convex surrogate? In this
paragraph, we explain our decision to only compare GRINDER
with EXP3. In fact, no standard convex surrogate can be used for
learning linear classifiers against δ-BMR, since the learner does not
know precisely the agent’s response function rt(α). As a result,
the learner cannot guarantee that `(α, rt(α)) is convex in α, even
if `(α, z) (z being independent of α) is convex in α! Concretely,
think about the following counterexample: let h = (1, 1,−1), h′ =
(0.5,−1, 0.25) be two hyperplanes, a point x = (0.55, 0.4), y =
+1, δ = 0.1, and let `(h, r(h)) = max{0, 1 − y · 〈h, r(h)〉}
(i.e., hinge loss, which is convex). We show that when (x, y)
is a δ-BMR agent, `(α, r(α)) is no longer convex in α. Take
b = 0.5 and construct hb = 0.5h + 0.5h′ = (0.75, 0,−0.375) =
(1, 0,−0.5). (x, y) only misreports to (say) (0.61, 0.4) when pre-
sented with h (as hb and h′ classify x as +1). Computing the
loss: `(hb, r(hb)) = 0.95, `(h, r(h)) = 0.99 and `(h′, r(h′)) = 0.875, so, `(hb, r(hb)) >
b`(h, r(h)) + (1 − b)`(h′, r(h′)). Since in general `(α, r(α)) is not convex, it is may seem un-
fair to compare Bandit Gradient Descent (BGD) with GRINDER but we include comparison results
in Fig. 5, where GRINDER greatly outperforms BGD, for completeness. Identifying surrogate losses
that are convex against δ-BMR agents remains a very interesting open question.

11Namely, their utility function is: ut(αt, rt(αt), σt) = δ′ · 〈αt, rt(αt)〉 − ‖xt − rt(αt)‖2.

8

5 Lower Bound

In this section we prove nearly matching lower bounds for learning a linear classifier against δ-BMR
agents. To do so, we use the geometry of the sequence of datapoints σt interpreted in the dual space.
The proofs can be found in Appendix C.

Theorem 5.1. For any strategy and any δ, there exists a sequence of {σt}Tt=1 such that:

E

∑
t∈[T]

`(αt, rt(αt), yt)

− min
α?∈A

E

∑
t∈[T]

`(α?, rt(α
?), yt)

 ≥ 1

9
√

2

√
T log

(
λ(A)

λ(p̃δ)

)
(3)

where p̃δ is the smallest σt-induced polytope from the sequence of {σt}Tt=1.

We remark here that that the σt-induced polytopes as defined in the previous section depend only on
the sequence of agents that we face, and not on the properties of any algorithm. We proceed with
the proof sketch of our lower bound.

Proof Sketch. Fix a δ > 0, and assume that the agents are truthful12 (i.e., rt(α) = xt,∀t ∈ [T],∀α ∈
A). Faithful to our model, however, the learner can only observe rt(α), without knowing its equiv-
alence to xt. We prove the theorem in two steps.

In the first step (Lem. C.1) we show a more relaxed lower bound of order Ω(
√
T). To prove this,

we fix a particular feature vector x for the agent, and two different adversarial environments (call
them U and L) choosing the label of x according to different Bernoulli probability distributions;
one of them favors label yt = +1, while the other favors label yt = −1. The Ω(

√
T) lower bound

corresponds to the regret accrued by the learner in order to distinguish between U and L.

For the second step, we separate the horizon into Φ = log(λ(A)/λ(p̃δ)) phases, each comprised
by T/Φ consecutive rounds. In all rounds of a phase, the agent has the same x and the labels are
constructed by adversarial environments U and L. At the end of each phase, either U or Lmust have
caused regret at least Ω(

√
T/Φ). According to which one it was, nature selects the feature vector

for the next phase in a way that guarantees that one of the best-fixed actions for all previous phases
is still part of the optimal actions at this phase. The general pattern that we follow for the feature
vectors of each phase is xφ =

(
1
2 ,

1
4

(
1 + κφ · 2φ

))
where κφ is a phase-specific constant for which

κ0 = 1 and κφ+1 = 2κφ + 1 if the environment causing regret Ω(
√
T) was U and κφ+1 = 2κφ − 1

otherwise. This pattern establishes that the feature vectors are spaced in a way that every algorithm
would be penalized enough, in order to be able to discern their labels. �

Acknowledgments and Funding Disclosures

The authors are grateful to Kira Goldner, Akshay Krishnamurthy, Thodoris Lykouris, David Parkes,
and Vasilis Syrgkanis for helpful discussions at different stages of this work, and to the anonymous
reviewers for their comments and suggestions.

This work was partially supported by the National Science Foundation under grants CCF-1718549
and IIS-2007951 and the Harvard Data Science Initiative.

Broader Impact

In this paper we put forth and study a model for strategic classification against real-life agents. We
believe that when Machine Learning (ML) algorithms are deployed for real-life decision-making,
the agents that we face (e.g., the human subjects that we wish to “classify”) will not try to sabotage
the decision-making algorithms, but they will try to manipulate them. The power and the ability to
manipulate a decision-making rule is inherently tied to the learned outcome for the rule. Strategic
ML aims to address these concerns with the construction of ML algorithms that are either strate-
gyproof (i.e., they provide no incentive to the agents to manipulate) or that are strategy-aware (i.e.,
they are not affected too much by strategic manipulations).

12Truthful agents are δ-BMR agents, so the lower bound holds for the whole family of δ-BMR agents.

9

We think that since classification is a fundamental ML task, computer scientists together with
economists should try to understand two key questions:

1. What is the “correct” behavioral model to explain the agents’ reports?
2. How do we design ML algorithms that take this behavioral model into account, before deploying

the algorithms for policy making?

However, blindly optimizing predictive accuracy and the role of incentives in it, can have detrimen-
tal societal effects. For example, there have been works recently analyzing the disparate effects that
strategic manipulation can have among different groups ([20, 28]) when the agents’ utility functions
are similar to the ones considered by Hardt et al. [19]. We believe that a next step for learning
strategy-aware linear classifiers against δ-BMR is to study whether there exist algorithms that con-
currently satisfy the no-regret property and provide better societal guarantees.

References
[1] Noga Alon, Nicolo Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feed-

back graphs: Beyond bandits. In JMLR WORKSHOP AND CONFERENCE PROCEEDINGS,
volume 40. Microtome Publishing, 2015. 2, 7, 8, 19, 20

[2] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th Annual
Foundations of Computer Science, pages 322–331. IEEE, 1995. 6

[3] Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and Ariel D Procaccia. Commitment
without regrets: Online learning in stackelberg security games. In Proceedings of the sixteenth
ACM conference on economics and computation, pages 61–78. ACM, 2015. 2, 4

[4] Yahav Bechavod, Katrina Ligett, Zhiwei Steven Wu, and Juba Ziani. Causal feature discovery
through strategic modification. arXiv preprint arXiv:2002.07024, 2020. 3

[5] Omer Ben-Porat and Moshe Tennenholtz. Best response regression. In Advances in Neural
Information Processing Systems, pages 1499–1508, 2017. 2

[6] Omer Ben-Porat and Moshe Tennenholtz. Competing prediction algorithms. arXiv preprint
arXiv:1806.01703, 2018. 2

[7] Avrim Blum, Nika Haghtalab, and Ariel D Procaccia. Learning optimal commitment to over-
come insecurity. In Advances in Neural Information Processing Systems, pages 1826–1834,
2014. 2

[8] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 547–555. ACM, 2011. 2

[9] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Jour-
nal of Machine Learning Research, 12(May):1655–1695, 2011. 2

[10] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122,
2012. 2

[11] Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex
optimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 72–85. ACM, 2017. 3

[12] Yang Cai, Constantinos Daskalakis, and Christos Papadimitriou. Optimum statistical estima-
tion with strategic data sources. In Conference on Learning Theory, pages 280–296, 2015.
2

[13] Yiling Chen, Chara Podimata, Ariel D Procaccia, and Nisarg Shah. Strategyproof linear re-
gression in high dimensions. In Proceedings of the 2018 ACM Conference on Economics and
Computation, pages 9–26. ACM, 2018. 2

10

[14] Alon Cohen, Tamir Hazan, and Tomer Koren. Online learning with feedback graphs without
the graphs. In International Conference on Machine Learning, pages 811–819, 2016. 2

[15] Rachel Cummings, Stratis Ioannidis, and Katrina Ligett. Truthful linear regression. In Confer-
ence on Learning Theory, pages 448–483, 2015. 2

[16] Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning.
Journal of Computer and System Sciences, 76(8):759–777, 2010. 2

[17] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strate-
gic classification from revealed preferences. In Proceedings of the 2018 ACM Conference on
Economics and Computation, pages 55–70. ACM, 2018. 2, 3, 4, 17, 27

[18] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex op-
timization in the bandit setting: gradient descent without a gradient. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society for
Industrial and Applied Mathematics, 2005. 3

[19] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classi-
fication. In Proceedings of the 2016 ACM conference on innovations in theoretical computer
science, pages 111–122. ACM, 2016. 3, 10

[20] Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. The disparate effects of strate-
gic manipulation. In Proceedings of the Conference on Fairness, Accountability, and Trans-
parency, pages 259–268, 2019. 10

[21] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 681–690.
ACM, 2008. 2

[22] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. https://tor-lattimore.com/
downloads/book/book.pdf, 2019. 2

[23] Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating the
optimal strategy to commit to. In International Symposium on Algorithmic Game Theory,
pages 250–262. Springer, 2009. 2

[24] Wei Liu and Sanjay Chawla. A game theoretical model for adversarial learning. In 2009 IEEE
International Conference on Data Mining Workshops, pages 25–30. IEEE, 2009. 2

[25] Janusz Marecki, Gerry Tesauro, and Richard Segal. Playing repeated stackelberg games with
unknown opponents. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 821–828. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012. 2

[26] Reshef Meir, Shaull Almagor, Assaf Michaely, and Jeffrey S Rosenschein. Tight bounds
for strategyproof classification. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1, pages 319–326. International Foundation for Autonomous
Agents and Multiagent Systems, 2011. 2

[27] Reshef Meir, Ariel D Procaccia, and Jeffrey S Rosenschein. Algorithms for strategyproof
classification. Artificial Intelligence, 186:123–156, 2012. 2

[28] Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic clas-
sification. In Proceedings of the Conference on Fairness, Accountability, and Transparency,
pages 230–239, 2019. 10

[29] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative pre-
diction. In Proceedings of 37th International Conference on Machine Learning, 2020. 3

[30] Javier Perote and Juan Perote-Pena. Strategy-proof estimators for simple regression. Mathe-
matical Social Sciences, 47(2):153–176, 2004. 2

[31] Yonadav Shavit, Benjamin L Edelman, and Brian Axelrod. Causal strategic linear regression.
In Proceedings of the 37th International Conference on Machine Learning, 2020. 3

11

https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf

[32] Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends R© in
Machine Learning, 12(1-2):1–286, 2019. 2

[33] Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combina-
torics, 13:389–496, 2004. 24

[34] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 10–19,
2019. 3

[35] Thomas Zaslavsky. Counting the faces of cut-up spaces. Bulletin of the American Mathemati-
cal Society, 81(5):916–918, 1975. 24

12

