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Abstract

Peer prediction mechanisms are often adopted to elicit truth-
ful contributions from crowd workers when no ground-truth
verification is available. Recently, mechanisms of this type
have been developed to incentivize effort exertion, in addi-
tion to truthful elicitation. In this paper, we study a sequential
peer prediction problem where a data requester wants to dy-
namically determine the reward level to optimize the trade-off
between the quality of information elicited from workers and
the total expected payment. In this problem, workers have
homogeneous expertise and heterogeneous cost for exerting
effort, both unknown to the requester. We propose a sequen-
tial posted-price mechanism to dynamically learn the optimal
reward level from workers’ contributions and to incentivize
effort exertion and truthful reporting. We show that (1) in
our mechanism, workers exerting effort according to a non-
degenerate threshold policy and then reporting truthfully is an
equilibrium that returns highest utility for every worker, and
(2) The regret of our learning mechanism w.r.t. offering the
optimal reward (price) is upper bounded by O(T%/*) where
T is the learning horizon. We further show the power of our
learning approach when the reports of workers do not neces-
sarily follow the game-theoretic equilibrium.

1 Introduction

Crowdsourcing has arisen as a promising option to facilitate
machine learning via eliciting useful information from hu-
man workers. For example, such a notion has been widely
used for labeling training samples, e.g., Amazon Mechani-
cal Turk. Despite its simplicity and popularity, one salient
feature or challenge of crowdsourcing is the lack of eval-
uation for the collected answers, because ground-truth la-
bels often are either unavailable or too costly to obtain.
This problem is called information elicitation without ver-
ification IEWV) (Waggoner and Chen 2014). A class of
mechanisms, collectively called peer prediction, has been
developed for the IEWV problem (Prelec 2004; Miller,
Resnick, and Zeckhauser 2005; Jurca and Faltings 2007;
2009; Witkowski and Parkes 2012a; 2012b; Radanovic and
Faltings 2013). In peer prediction, an agent is rewarded ac-
cording to how his answer compares with those of his peers
and the reward rules are designed so that everyone truthfully
reporting their information is a game-theoretic equilibrium.
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More recent work (Witkowski et al. 2013; Dasgupta and
Ghosh 2013; Shnayder et al. 2016) on peer prediction con-
cerns effort elicitation, where the goal is not only to induce
truthful report, but also to induce high quality answers by
incentivizing agents to exert effort. In such work, the mech-
anism designer is assumed to know workers’ expertise level
and their cost for effort exertion and designs reward rules
to induce optimal effort levels and truthful reporting at an
equilibrium.

This paper also focuses on the effort elicitation of peer
prediction. But different from prior work, our mechanism
designer knows neither workers’ expertise level nor their
cost for effort exertion. We introduce a sequential peer pre-
diction problem, where the mechanism proceeds in rounds
and the mechanism designer wants to learn to set the opti-
mal reward level (that balances the amount of effort elicited
and the total payment) while observing the elicited an-
swers in previous rounds. There are several challenges to
this problem. First, effort exertion is not observable and no
ground-truth answers are available for evaluating contribu-
tions. Hence, it is not immediately clear what information
the mechanism designer can learn from the observed an-
swers in a sequential mechanism. Second, forward-looking
workers may have incentives to mislead the learning pro-
cess, hoping for better future returns.

The main contributions of this paper are the following:
(1) We propose a sequential peer prediction mechanism by
combining ideas from peer prediction with multi-armed ban-
dit learning (Lai and Robbins 1985; Auer, Cesa-Bianchi, and
Fischer 2002). (2) In this mechanism, workers exerting ef-
fort according to a non-degenerate threshold policy and then
reporting truthfully in each round is an equilibrium that re-
turns highest utility for every worker. (3) We show that the
regret of this mechanism w.r.t. offering the optimal reward
is upper bounded by O(T3/*) where T is the learning hori-
zon. We also show that under a “mean-field” assumption, the
sequential learning mechanism can be extended to a setting
where workers may not be fully rational. (4) Our sequential
peer prediction mechanism is minimal in that reported labels
are the only information we need from workers.

In the rest of the paper, we first survey the most re-
lated work in Section 1.1. Section 2 introduces our prob-
lem formulation. We then present a game-theoretic analysis
of worker behavior in a one-stage static setting in Section



3. Based on the equilibrium analysis of the one-stage set-
ting, we propose and analyze a learning mechanism to learn
the optimal bonus level using posted price in Section 4. We
also discuss an extension of our learning mechanism to a
setting where workers may not be fully rational. Section 5
concludes this paper. All omitted details can be found in the
full version of the paper (Liu and Chen 2016b).

1.1 Related work

Eliciting high-quality data from effort-sensitive workers
hasn’t been addressed within the literature of peer predic-
tion until recently. Witkowski et al. [2013] and Dasgupta and
Ghosh [2013] formally introduced costly effort into models
of IEWV. The costs for effort exertion were assumed to be
homogeneous and known and static, one-shot mechanisms
were developed for effort elicitation and truthful reporting.
Our setting allows participants to have heterogeneous cost
of effort exertion drawn from a common unknown distribu-
tion and hence we consider a sequential setting that enables
learning over time. Liu and Chen [2016a] is the closest to
this work. It considered the same general setting and par-
tially resolved the problem of learning the optimal reward
level sequentially. There are two major differences however.
First, the method developed in Liu and Chen [2016a] re-
quired workers to report their private cost in addition to their
answer, which is arguably undesirable for practical appli-
cations. Our learning mechanism in contrast is “minimal”
(Segal 2007; Witkowski and Parkes 2013) and only asks for
answers (for tasks) from workers. Second, the mechanism of
Liu and Chen [2016a] was built upon the output agreement
mechanism as the single-round mechanism. Output agree-
ment and hence the mechanism of Liu and Chen [2016a]
suffer from potential, simple collusions of workers: collud-
ing by reporting an uninformative signal will lead to a better
equilibrium (higher utility) for workers. By building upon
the mechanism of Dasgupta and Ghosh [2013], which as a
one-shot mechanism is resistant to such simple collusion,
we develop a collusion-resistant sequential learning mecha-
nism.

Generally speaking, when there is a lack of knowledge
of agents, the design problem needs to incorporate learn-
ing from prior outputs from running the mechanism — see
Chawla, Hartline, and Nekipelov [2014] for specific exam-
ples on learning with auction data. And this particular topic
has also been studied within the domain of crowdsourcing.
For example, Roth and Schoenebeck [2012] and Abernethy
et al. [2015] consider strategic data acquisition for estimat-
ing the mean and for online learning respectively. Our prob-
lem differs from above in that both agents’ action (effort ex-
ertion) and ground-truth outcomes are unavailable.

2 Problem Formulation
2.1 Formulation and settings

Suppose in our system we have one data requester (or a
mechanism designer), and there are N candidate workers
denoted by ¢ = {1,2,..., N}, where N > 4. In all we
have IV 41 interactive agents. The data requester has binary-
answer tasks, with answer space {—1, 41}, that she’d like to

get labels for. The requester assigns tasks to workers.

Label generated by worker ¢ € C comes from a dis-
tribution that depends both on the ground-truth label and
an effort variable e;. Suppose there are two effort levels,
High and Low, that a worker can potentially choose from:
e; € {H,L}. We model the cost ¢ for exerting High ef-
fort for each (worker, task) pair as drawn from a distribu-
tion with c.d.f. F'(c) on a bounded support [0, ¢yyax]; While
exerting Low effort incurs no cost. We assume such costs
are drawn in an i.i.d. fashion. Denote worker ¢’s probabil-
ity of observing s’ € {—1,+1} when the ground-truth la-
bel is s € {—1,+1} as p;, = Pr(s’ = s|s,e;), under
effort level e;. Note with above we have assumed that the
labeling accuracy is symmetric, and is independent of the
ground-truth label s. Further for simplicity of analysis, we
will assume all workers have the same set of p; i, p;, 1, de-
noting as py, pr. With higher effort, the expertise level is
higher: 1 > pyg > pr, > 0.5 — we also assume the labeling
accuracy is no less than 0.5. The above are common knowl-
edge among workers, while the mechanism designer doesn’t
know the form of F(-); neither does she know pg, pr,. But
we assume the mechanism designer knows the structural in-
formation, such as costs are i.i.d., workers are effort sensi-
tive, and there are two effort levels etc.

The goal of the learner is to design a sequential peer pre-
diction mechanism for effort elicitation via observing con-
tributed data from workers, such that the mechanism will
help the learner converge to making the optimal action (will
be defined later).

2.2 Reward mechanism

Once assigned a task, worker ¢ has a guaranteed base pay-
ment b > 0 for each task he completes. In addition to the
base payment, the worker receives a reward B; (k) for task
k that he has provided an answer for. The reward is de-
termined using the mechanism proposed by Dasgupta and
Ghosh [2013], where in this paper, we denote this specific
peer prediction mechanism for effort elicitation as (DG13).
In this mechanism, for each (worker, task) pair (i, k), first
a reference worker j # i is selected randomly from the set
of workers who are also assigned task k. Suppose any pair
of such workers have been assigned d other distinct tasks
{41,...,%q} and {j1, ..., ja} respectively. Then the mecha-
nism pays B; (k) to worker ¢ on task k in the following way:
the payment consists of two terms; one term that rewards
agreement on task &, and another that penalizes on uninfor-
mative agreement on other tasks:

Bl(k) = 1(Li<k> _ Ljuf)) BT IV 2%

where we denote reports from worker 4 on task n as L;(n)
and L9 = S0 (1 + Li(in))/(2d),If = 1 — L% Our

n=1
bonus rule follows exactly the same idea except that we will
multiply B;(k) by a constant B € [0, B] (which we can

choose): B;(k) := B - Bl(k).

Task assignment: We’d like all workers to work on the
same number of tasks, all tasks are assigned to the same



number of workers and any pair of workers have distinct
tasks. In particular, each worker is assigned M > 1 tasks —
denote the set of tasks assigned to worker i as 7; : | T;| = M.
This is to simplify the computation of workers’ utility and
payment functions. Each task is assigned to at least two
workers. For any pair of workers who has been assigned a
common task, they have at least 1 < d < M distinct tasks.
These are to ensure that the (DG13) mechanism is applica-
ble. We also set the number of assignments for each task to
be the same — denote this number as 1 < K < N, so that
when we evaluate the accuracy of aggregated labels later, all
tasks receive the same level of accuracy. But note we do not
assign all tasks to all workers, i.e., K # N. Suppose each
assigned task k appears in D < d tasks’ distinct set for each
worker. The described assignment can be achieved by as-
signing N different tasks in each round. For more details on
assignments please refer to our full version.

2.3 Worker model

After receiving each task k, worker ¢ first realizes the cost
¢;(k) for exerting High effort. Then worker ¢ decides his ef-
fort level e; (k) € {H, L} and observes a signal L; (k) (label
of the task). Worker ¢ can decide either to truthfully report
his observation r; (k) = 1 (denote by r; (k) the decision vari-
able on reporting) or to revert the answer r; (k) = 0:

r L»L k 5 if’f‘i k=1
Li(k) = { —L(igk% ifﬁigk) =0

Workers are utility maximizers. Denote the utility func-
tion at each time (or step) for each worker as u;, which is
assumed to have the following form (payment — cost):

ui=Mb+ > Bi(k) = > ci(k), Vi.

keT; kET;

2.4 Data requester model

After collecting labels for each task, the data requester will
aggregate labels via majority voting. Denote workers who
labeled task k as wy (1), ..., wx (K). Then the aggregate label
for k is given by

K
LA(k) = 1<Z Ly oy (R)/ K > 0) 2 1.

The data requester’s objective is to find a bonus level B
(as in B;(k)) that balances the accuracy of labels collected
from workers, and the total payment. Denote requester’s ob-
jective function at each step as U(B) (assigning N tasks):

N

K
up) =3 [Prw“(m WIS E[me)(k)]} ,
n=1

k=1

where L(k) denotes the true label of task k, and n > O is a
weighting constant balancing the two terms in the objective.

Since we have assumed that all tasks have been assigned
the same number of workers, and workers are homogeneous
in their labeling accuracy and cost (i.i.d.), we know all tasks
enjoy the same probability of having a correct label (a-
priori). We denote this probability as P(B) := Pr[LA(k) =

L(k)], Vk. Further as workers do not receive payment when
a task is not assigned to him, U/(B) can be simplified (and
normalized ) to the following form:

N
UB)=PB) - LY S EBK), @

i€C k=1

Suppose there exists a maximizer B* = argmax gl (B) .

2.5 Sequential learning setting

Suppose our sequential learning algorithm goes for 7" stages.
At each stage t = 1, ..., T, learner assigns a certain number
of tasks M;(t) to a set of selected workers i € S(t)%. The
learner offers a bonus bundle B; ; to each worker ¢ € S(t)
(the bonus constant in reward mechanism). The regret of of-
fering {B; + }:+ w.r.t. B* is defined as follows:

. M;(t) - EU(Bi,)]
R(T) =T -U(B") - ol
o ) ;L;S:(t) > jeswy M)

3)

Note we normalize E[U/(B; ;)] using the number of assign-
ments — intuitively the more the requester assigned with
a wrong price, the more regret will be incurred. The goal
of the data requester is to design an algorithm such that
R(T) = o(T). We can also define R(T") as being un-
normalized, which will add a constant (bounded number of
assignments at each step) in front of our results later.

3 One stage game-theoretic analysis

From the data requester’s perspective, we need to first under-
stand workers’ actions towards effort exertion and reporting
under different bonus levels, in order to figure out the opti-
mal B*. We start with the case that the data requester knows
the cost distribution, and we characterize the equilibria for
effort exertion and reporting, i.e. (e;, r;), on workers’ side.
Note ej, r; are both vectors defined over all tasks — this is a
simplification of notation as workers do not receive all tasks.
We are safe as if task k is not assigned to ¢, worker ¢ does not
make decisions on (e;(k), r;(k)). We define Bayesian Nash
Equilibrium (BNE) in our context as follows:

Definition 1. We say {(e},r)}icc is a BNE if Vj, (ej,rj):
Elu;l{(ei,ri)}ice] = Eluj|[{(ef, ri) iz (e5,15)] -

In this paper, we restrict our attention to symmetric BNE.
For each assigned task, we have a Bayesian game among
workers in C: a worker’s decision on effort exertion is a func-
tion of c;, ej(c;) : [0, cmax]™ — {H, L}, which specifies
the effort levels for worker ¢ when his realized cost is ¢;
and ri(e;) : {0,1}M — {0, 1}M gives the reporting strat-
egy for the chosen effort level. We focus on threshold poli-
cies: that is, there is a threshold ¢* such that e;(k) = H
for all ¢;(k) < ¢* and e;(k) = L otherwise. In fact, play-
ers must play a threshold strategy for effort exertion at any
symmetric BNE: workers’ outputs do not depend on ¢;(k)
and worker i’s chance of getting a bonus will not change

'which does not affect optimizing the utility function.
2For details please refer to our algorithm.



when he has a cost ¢}(k) < ¢;(k); so a worker will choose
to exert effort, if it is a better move for an even higher cost.
We will use (¢*,7;(k)) to denote this threshold (c¢*) strat-
egy for workers. Denote r;(-) = 1 the reporting strategy that
r;(H) = r;(L) = 1, i.e. reporting truthfully regardless of
the choice of effort.

Theorem 2. When py, > 0.5 and F(c) is concave, there
exists a unique threshold c*(B) > 0 for B > 0 such that
(¢*(B), 1) is a symmetric BNE for all workers on all tasks.

Other equilibrias: The above threshold policy is unique
only in non-degenerate effort exertion (c¢* > 0). There exist
other equilibria. We summarize them here:

e Un-informative equilibrium: Colluding by always report-
ing the same answer to all tasks is an equilibrium. Simi-
larly as mentioned in (Dasgupta and Ghosh 2013), when
colluding (pure or mixed strategies) the bonus index de-
fined in Eqn. (1) reduces to O for each worker, which leads
to a worse equilibrium.

o Low effort: When pr, = 1/2, ¢* = 0, i.e., no effor exertion
(followed by either truthful or untruthful reporting) is also
an equilibrium: when no one else is exerting effort, each
worker’s answer will be compared to a random guess. So
there would be no incentive for effort exertion.

e Permutation: Exerting the same amount of effort and then
reverting the reports (r; = 0) is also an equilibrium.

But we would like to note that though there may exist mul-
tiple equilibria, all others lead to strictly less utility for each
worker at equilibrium compared to the threshold equilibrium
with ¢* > 0 followed by truthful reporting, except for the
permutation equilibria, which gives the same expected util-
ity to workers.

Solve for optimal B*: After characterizing the equilibria
c* on effort exertion as a function of B, we can compute
P(B) and E[B; (k)] for each reward level B. Then solving
for the optimal reward level becomes a programming prob-
lem in B, which can be solved efficiently when certain prop-
erties, e.g. convexity, can be established for /().

4 Sequential Peer Prediction

In this section we propose an adaptive learning mechanism
to learn to converge to the optimal or nearly optimal reward
level. As mentioned earlier, a recent work (Liu and Chen
2016a) attempted to resolve this challenge. But besides the
output labels, workers are also required to report the private
costs, in which sense the proposed learning mechanism is
not “minimal”. We try to remove this requirement by learn-
ing only through the label information reported by the work-
ers. In this section, we assume the requirements for Theorem
2 hold, and workers will follow an equilibrium that returns
the highest utility.

4.1 Challenges

In designing the mechanism, we face two main challenges.
The first challenge is on the learning part. In order to select
the best B*, we need to compute /(B), VB, which can be

computed as a function of B and p(B), the probability of la-
beling accurately when B is offered and the threshold policy
¢*(B) is adopted by workers:

p(B) := F(c"(B))pu + [ = F(c"(B))lpL. (4

The dependency on B is straight-forward. For p(B), e.g.
when using Chernoff bound for approximating P(B):

p >, 1(worker i is correct)
r
M

> 1 —exp(—2(p(B) — 0.5)° M),

P(B) = >0.5

it is clear P(B) is a function of p(B). In fact both E[B; (k)]
and P(B) are functions of p(B), so is U(-). For details,
please see Appendix of (Liu and Chen 2016b). The question
pings down to learn p(B). Since we do not have the ground-
truth labels, we have no way to directly evaluate p(B) via
checking workers’ answers. Also since we do not elicit re-
ports on private costs, we are un-able to estimate the amount
of induced effort for each reward level.

The second challenge we have is that when workers are
returning and participating in a/an sequential/adaptive learn-
ing mechanism, they have incentives to mislead the learning
process by deviating from the one-shot BNE strategy for a
task, so to create untruthful samples (and then collected by
learner), which will lead the learner into believing that in-
ducing certain amount of effort requires a much higher re-
ward level. The cost-reporting mechanism described in (Liu
and Chen 2016a) proposes a method to deter such a devi-
ation by eliminating workers who over-reported from re-
ceiving potentially higher bonus. We will describe a two-
fold cross validation approach to decouple such incentives,
which aims to remove the requirement of reporting addi-
tional information.

Learning w/o ground-truth The following observation
inspires our method for learning without ground-truth. For
each bonus level B, we can estimate p(B) (at equilibrium)
through the following experiments: the probability of ob-
serving a pair of matching answers for any pair of workers
i, j (denoted by p,, (B) for each bonus level B) on equilib-
rium can be written as follows:

pm(B)=  p(B) + (1-p(B)* . (5

match on correct label ~ match on wrong label

The above matching formula forms a quadratic equa-
tion of p(B). From Eqn. (4) we know p(B) >
0.5, VB, when py,pr, > 0.5. Then the only solution to
the matching Eqn. (5) that is larger than 0.5 is

p(B) =1/2 4+ \/2pn(B) —1/2.

Above solution is well defined, as from Eqn. (5) we can
also deduce that p,,,(B) > 1/2. Therefore though we can-
not evaluate each worker’s labeling accuracy directly, we
can make such an inference using the matching probability,
which is indeed observable.



Decoupling incentives via cross validation To solve the
incentive issue, we propose the following cross validation
approach (illustrated in Fig. 1). First the entire crowd C is
separated into two groups GG1, G_1 uniformly random, but
with equal size (when N is even) or their sizes differ by at
most 1 (when NV is odd). Suppose we have at least N > 4.
Denote worker i’s group ID as g(i) € {—1,1}. Then we
have |G1],|G—-1| > 2. For our learning algorithm, only the
data/samples collected from group —g(i) will be used to
reward any worker ¢ in group ¢(%). Secondly when select-
ing reference worker for comparing answers for mechanism
(DG13), we select from the same group g(i).

Reference
worker Gl G -1
selection

For learning

phases .
data .

Exploration
data

Figure 1: Illustration of our mechanism.

4.2 Mechanism

We would like to treat each bonus level as an “arm” (as in
standard MAB context) to explore with. Since we have a
continuous space of bonus level B, we separate the support
of bonus level B ([0, B]) into finite intervals. Then we treat
each bonus interval as an arm. Our goal is to select the best
one of them, and bound the performance in such a selection.

We set up [T%] arms as follows: chooses a 0 < z < 1,
separate [0, B] into N, = [T#] uniform intervals:

[0, B/Ny], ... [(k=1)B/Ny, kB/Ny], ...,

For each interval we take its right end point as the bonus
level to offer: By = kB/N,. Denote by p;, (By) the es-
timated matching probability for agents in group g under
bonus level By, and p7 (By,)s the estimated p(By,) for group
g, at stage ¢; and we use Z/IZ;(B ) to denote the estimated util-
ity function when using a noisy p(B) (p), instead of the true
ones. We present Mechanism 1.

Note since we assign the same number of tasks to each
labeler at all stages, we have the regret defined in Eqn. (3)
become equivalent with the following form:

ZI Y wet)-EU(B; )] ~UB)),

t=1 ge{1,-1}
where when ¢t is in exploration stages wy(t) = 1/2, other-
wise wy(t) = |Gy4|/N.

4.3 Equilibrium analysis: workers’ side

Denote a worker’s action profile at step ¢ as a;(t) :=
(ei(t), ri(t)). We adopt BNE as our solution concept:

3We assume we know py, or a non-trivial lower bound on p;, >
0.5.

[(Na—l)B/Na7 B

Mechanism 1 (SPP_PostPrice)

Initialization: t = 1. D(t) := t’logt,0 < 6 < 1. Ex-
plore each bonus level By, once and update 7, ,(Bj) (for
details please refer to the exploration phases), and set the
number of explorations as n;(t) = 1.
fort =1toT do
Set £(t) := {i : n;(t) < D(¢)}.
if £(t) # (0 then
Exploration: randomly pick By, k € £(t) to offer.
Follow subroutine (Explore_Crowd).
else
Exploitation: S(t)

= C. Offer By , toi € Gy:

B;,t = argmaXBk,k:l,Z,...,]'TZ]uﬁf(Bk)(Bk’)a

Follow (DG13) for workers in each group G|,.
end if
end for

Mechanism 2 (Explore_Crowd)
At exploration phases,
1: Randomly select two workers S, (t) = {i9(t),j9(t)}
from each group Gy; S(t) := UgS,(t).
2: Assign 1 common and d distinct tasks to each S, (¢).

3: Denote by & (t) the set of time steps the algorithm en-
ters exploration and offered price By by time ¢. Es-
timate the probability of matching j;, ,(By) for each

crowd Gy, g € {—1,1} by averaging:

> WLimo@n(t) = Lj-oqun (1)),
t'eEp(t)
and reset pj, ;(By) to max{pj, ;(Bx),1/2}. Li(t') de-
notes the label for the common task at time ¢'.
4: Compute p7 (By,) (estimate for p(By) at time ¢t):

ﬁgn,t(Bk) =

p{(Br) = 1/2+/2p}, «(Bi) — 1/2.

Reset p (By) := max{p{ (Bx), pL}.

Definition 3. A set of reporting strategy {a =
{8;(t)}1=1,.... 7 }iec is a BNE if for any i, Val # &; we have

ZIE max u; (a5,a_;)|a;(1:t —1),a_3(1:t—1)]

ei(t),ri(t

>ZE max u;(al,a_;)lai(l:t—1),

e;(t),ri(t)

ai(l:t—1)].

We first characterize the equilibrium strategy for workers’
effort exertion and reporting with (SPP_PostPrice).

Lemma 4. At a symmetric BNE, the strategy for workers
can be decoupled into a composition of myopic equilibrium
strategies, that is e;(t) = c*(B*9%)(t)), combined with
ri(t) = 1,Vi,t.

Proof. W.l.0.g., consider worker i in GG;. We are going to
reason that deviating from one step BNE strategy for effort



exertion is non-profitable for worker i, when other players
are following the equilibria. Since the one stage equilibrium
strategy maximizes the utility at current stage, and it does
not affect the past utilities that have been already collected,
the potential gain by deviating comes from the future gains
in utilities in: (1) the offered bonus level (2) matching proba-
bility from other peers. For the bonus level offered to worker
1, it will only be computed using observed data from work-
ers in G_; at exploration phases. Note for our online learn-
ing process, the exploration phases only depend on the pre-
defined parameter D(¢), which does not depend on worker
1’s data (deterministic exploration). Similarly for all other
workers j € GG (reference workers), their future utility gain
is not affected by worker 7’s data. Therefore an unilateral
deviation from worker ¢ will not affect the matching proba-
bility from other peers. So no deviation is profitable. O

Again consider colluding workers. Potentially when of-
fered a certain bonus level, workers can collude by not ex-
erting effort regardless of their cost realization, so to mislead
the learner into believing that in order to incentivize cer-
tain amount of effort, a much higher bonus level is needed.*
There potentially exist infinitely many colluding strategies
for workers to game against a sequential learning algorithm.
We focus on the following easy-to-coordinate (for workers),
yet powerful strategy (Collude_Learn):

Definition 5 (Collude_Learn). Workers collude by
agreeing to exert effort when the offered bonus level B* ().t

satisfies B} ; )t > B(c; 1 (k))+V B, where c; (k) is the cost
for workers i to exert effort for task k at time t. VB > 0 is

a collusion constant.

In doing so workers mislead the learner into believing that
a higher bonus (differs by V B) is needed to induce certain
effort. The next lemma establishes the collusion-proofness:

Lemma 6. Colluding in (SPP_PostPrice) via
(Collude_Learn) is not an equilibrium.

In fact the reasoning for removing all symmetric collud-
ing equilibria is similar — regardless of how others collude
on effort exertion, when a worker’s realized cost is small
enough, he will deviate.

4.4 Performance of (SPP_PostPrice)
We impose the following assumptions :

Assumption 7. U(-) is Lipschitz in both p(B) and B:
[Us(B) —U(B)| < L1|p(B) — p(B)| + L2|B — BJ,

L1, Ly > 0 are the Lipschitz constants.

We have the following theorem:
Theorem 8. The regret of (SPP_PostPrice)is:

L,C(0
R(T) <O([T?**10g T) + LiCO) o2
2pL —1
+ LoC(2) BT ™% + const.
*This is similar to the colluding strategy that contributes unin-

formative signals we studied in Section 3.
SPlease refer to our full version for justification.

0 < 6,z < 1 are tunable parameters. C(0),C(z) > 0 are

constants. The optimal regret is R(T) < O(T3/*) when set-
ting z=1/4,0 = 1/2.

Proof. (Sketch) First notice by triangular inequality we
know R(T) < }2 cq 1y weRy(T), ie., the total regret
is upper bounded by the weighted sum of each group’s re-
gret. Since the two learning processes for the two groups
G1,G_1 parallel each other, we omit the g super- or sub-
script. We analyze for the regret incurred at the exploration
and exploitation stages respectively. For exploitation regret,
we first characterize the estimation error for estimating each
U(By). First by mean value theorem we can show:

1
p(Bi) — pt(Bg)| £ ———|Pm
At time ¢, an exploitation phase, there are D(t) number of
samples guaranteed; so the estimation Py, ((By) satisfies:
Pr[|pm(Bk) — Pm.e(Br)| > te%] < % . Then w.h.p., we
. _ . 1—0/2
have established that |p(By) — pt(Bk)l < st
ther by Lipschitz condition we know |U(By,) — U(By)| <
QL\};pi For any B that falls in the same interyal as By we
know: [U(B) —U(Bg)| < Lo|B — Bg| < LyBT™*.
Denote by By = argmaxpg, 5 p=1Ut(Bi) , ie.,
B; is the estimated optimal bonus level at time ¢ — at any
time ¢, by searching through all arm and we can find the
one maximizes the utility function from the empirically es-
timated function the learner currently has. Combine above

* L1~t79/2
—UB]) = 3

Lo BT~*. Then the exploration regret can be bounded as

ET(L“M/ 4 [,BT +0§ 2y
/ 2 72
= 2v2pr -1 =1

< L, -C(0)

T 2V2pr —
where we have used the fact that for any 0 < o < 1, there
exists a constant C'(«) such that Zthl &= < Cla)TH .
The total number of explorations are (7% log T number of
explorations needed for each of the [T*] arms): [T%] -

T%log T = [T%**log T . Sum over we finish the proof.
O

(Bk) — Z~777L,t(Bk)|'

Fur-

arguments, we can prove U (B*)

T1 9/2 4 Ly - C(2)BT ™% + const.

4.5 Beyond game theoretical model

So far we have modeled the workers as being fully rational,
and the reports as coming from game theoretical responses.
Consider the case workers’ responses do not necessarily fol-
low a game (or arguably no one is fully rational). Instead we
assume each worker has a labeling accuracy p;(B) for dif-
ferent B, where p;(B) can come from different models, be-
ing game theory driven, behavioral model driven or decision
theory driven, and can be different for different workers.
Challenges and a mean filed approach: With this model,
we can again write U(B) as a function of {p;(B)};
and B. In order to select B*, again we need to learn



pi(B). We re-adopt the bandit model we described ear-
lier, and estimate p;(B)s via observing the matching prob-
ability between worker ¢ and a randomly selected ref-
erence worker j: For each i, B we define p_;(B) :=

Y jec, i Pi(B)/|Gg@i\il, and we have

Ph(B) = pi(B)p—i(B) + (1 — pi(B))(1 — p_i(B)), (6)

where p!, (B) is the probability of observing a matching
for worker 7, when a random reference worker is drawn
(uniformly) from his group. The above forms a system
of quadratic equations in {p;(B)}; when {p’ (B)};s are
known. We then need to solve a perturbed quadratic equa-
tions for {p;(B)};, with {p’ (B)}:s being estimated via ob-
servations (Step 3 of (Explore_Crowd)). The following
challenges arise for analysis: (1) it is hard to tell whether the
solution for above quadratic equations is unique or not. (2)
Solving a set of perturbed (error in estimating {p, (B)}:s)
quadratic equations for each B incurs heavy computations.

Instead, by observing the availability of relatively large
and diverse population of crowd workers, we make the fol-
lowing mean filed assumption:

Assumption 9. For any worker i, p_;(B) = pg(;)(B) .
That is one particular worker’s expertise level does not
affect the crowd’s mean. This is not a entirely unreasonable

assumption to make, as the candidate pool of crowd workers
is generally large. With above p!,, (B) then becomes

Pin(B) = pi(B)By(s) (B) + (1 = pi(B)) (1 = Byi) (B)).
Averaging over i € G 4(;) we have:
ZiGGg(i)p:n(B)/‘G!](iﬂ = Z_’i(i)(B) + (1 - pg(i)(B))Zv
which is very similar to the matching equation we derived
earlier on. Again we can solve for p,(;)(B) as a function of

DoicGy Pin(B)/1G (). Plugging pyi) (B) back into Eqn.
(6), we obtain an estimate of p’(B) as follows:

Pi(B) = (P (B) + By(i) (B) = 1)/ (2Bg(5) (B) = 1).
Similar regret can be obtained — the difference only lies in

estimating p;(By)s. Details can be found in (Liu and Chen
2016b).

5 Conclusion

We studied the sequential peer prediction mechanism for
eliciting effort using posted price. We improve over status
quo towards making the peer prediction mechanism for ef-
fort elicitation more practical: (1) we propose a posted-price
and “minimal” sequential peer prediction mechanism with
bounded regret. The mechanism does not require workers to
report additional information, except their answers for as-
signed tasks. Further we show our learning results can gen-
eralize to the case when workers may not necessarily be fully
rational, under a mean-filed assumption. (2) Workers exert-
ing effort according to an informative threshold strategy and
reporting truthfully is an equilibria that returns highest util-

ity.
8We do not claim this is impossible to do. Rather, analyzing the

output from such a system of perturbed quadratic equations merits
a further study.
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