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ABSTRACT
Now that machine learning algorithms lie at the center of many
important resource allocation pipelines, computer scientists have
been unwittingly cast as partial social planners. Given this state of
a�airs, important questions follow. How do leading notions of fair-
ness as de�ned by computer scientists map onto longer-standing
notions of social welfare? In this paper, we present a welfare-based
analysis of fair classi�cation regimes. Our main �ndings assess the
welfare impact of fairness-constrained empirical risk minimization
programs on the individuals and groups who are subject to their
outputs. We fully characterize the ranges of �� perturbations to
a fairness parameter � in a fair Soft Margin SVM problem that
yield better, worse, and neutral outcomes in utility for individuals
and by extension, groups. Our method of analysis allows for fast
and e�cient computation of “fairness-to-welfare” solution paths,
thereby allowing practitioners to easily assess whether and which
fair learning procedures result in classi�cation outcomes that make
groups better-o�. Our analyses show that applying stricter fairness
criteria codi�ed as parity constraints can worsen welfare outcomes
for both groups. More generally, always preferring “more fair” clas-
si�ers does not abide by the Pareto Principle—a fundamental axiom
of social choice theory and welfare economics. Recent work in
machine learning has rallied around these notions of fairness as
critical to ensuring that algorithmic systems do not have disparate
negative impact on disadvantaged social groups. By showing that
these constraints often fail to translate into improved outcomes for
these groups, we cast doubt on their e�ectiveness as a means to
ensure fairness and justice.
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1 INTRODUCTION
In his 1979 Tanner Lectures, Amartya Sen noted that since nearly
all egalitarian theories are founded on an equality of some sort,
the heart of the issue rests on clarifying the “equality of what?”
problem [1]. The �eld of fair machine learning has not escaped
this essential question. Does machine learning have an obligation
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to assure probabilistic equality of outcomes across various social
groups [2, 3]? Or does it simply owe an equality of treatment [4]?
Does fairness demand that individuals (or groups) be subject to
equal mistreatment rates [5, 6]? Or does being fair refer only to
avoiding some intolerable level of algorithmic error?

Currently, the task of accounting for fair machine learning cashes
out in the comparison of myriad metrics—probability distributions,
error likelihoods, classi�cation rates—sliced up every way possible
to reveal the range of inequalities that may arise before, during, and
after the learning process. But as shown in work by Chouldechova
[7] and Kleinberg et al. [8], fundamental statistical incompatibilities
rule out any solution that can satisfy all parity metrics. Fairness-
constrained loss minimization o�ers little guidance on its own for
choosing among the fairness desiderata, which appear incommen-
surable and result in di�erent impacts on di�erent individuals and
groups. We are thus left with the harsh but unavoidable task of
adjudicating between these measures and methods. How ought
we decide? For a given application, who actually bene�ts from the
operationalization of a certain fairness constraint? This is a basic
but critical question that must be answered if we are to under-
stand the impact that fairness constraints have on classi�cation
outcomes. Much research in fairness has been motivated by the
well-documented negative impacts that these systems can have
on already structurally disadvantaged groups. But do fairness con-
straints as currently formulated in fact earn their reputation as
serving to improve the welfares of marginalized social groups?

When algorithms are adopted in social environments—consider,
for example, the use of predictive systems in the �nancial services
industry—classi�cation outcomes directly bear on individuals’ ma-
terial well-beings. We, thus, view predictions as resource allocations
awarded to individuals and by extension, to various social groups.
In this paper, we build out a method of analysis that takes in generic
fair learning regimes and analyzes them from a welfare perspective.

Our main contributions, presented in Section 3, are methodolog-
ical as well as substantive in the �eld of algorithmic fairness. We
show that how “fair” a classi�er is—howwell it accords with a group
parity constraint such as “equality of opportunity” or “balance for
false positives”—does not neatly translate into statements about
di�erent groups’ welfares are a�ected. Drawing on techniques from
parametric programming and �nding a SVM’s regularization path,
our method of analysis �nds the optimal �-fair Soft-Margin SVM
solution for all values of a fairness tolerance parameter � 2 [0, 1].
We track the welfares of individuals and groups as a function of �
and identify those ranges of � values that support solutions that are
Pareto-dominated by neighboring � values. Further, the algorithmic
implementation of our analyses is computationally e�cient, with
a complexity on the same order as current standard SVM solvers
that �t a single SVM model, and is thus practical as a procedure
that translates fairness constraints into welfare e�ects for all � .
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Our substantive results show that a classi�er that abides by
a stricter fairness standard does not necessarily issue improved
outcomes for the disadvantaged group. In particular, we prove two
results: �rst, starting at any nonzero �-fair optimal SVM solution,
we express the range of �� < 0 perturbations that tighten the
fairness constraint and lead to classi�er-output allocations that are
weakly Pareto dominated by those issued by the “less fair” original
classi�er. Second, there are nonzero �-fair optimal SVM solutions,
such that there exist �� < 0 perturbations that yield classi�cations
that are strongly Pareto dominated by those issued by the “less
fair” original classi�er. We demonstrate these �ndings on the Adult
dataset. In general, our results show that when notions of fairness
rest entirely on leading parity-based notions, always preferring
more fair machine learning classi�ers does not accord with the
Pareto Principle, an axiom typically seen as fundamental in social
choice theory and welfare economics.

The purposes of our paper are twofold. The �rst is simply to
encourage a welfare-centric understanding of algorithmic fairness.
Whenever machine learning is deployed within important social
and economic processes, concerns for fairness arise when societal
ideals are in tension with a decision-maker’s interests. Most leading
methodologies have focused on optimization of utility or welfare to
the vendor but have rarely awarded those individuals and groups
who are subject to these systems the same kind of attention to
welfare e�ects. Our work explicitly focuses its analysis on the latter.

We also seek to highlight the limits of conceptualizing fairness
only in terms of group-based parity measures. Our results show that
at current, making a system “more fair” as de�ned by popular met-
rics can harm the vulnerable social populations that were ostensibly
meant to be served by the imposition of such constraints. Though
the Pareto Principle is not without faults, the frequency with which
“more fair” classi�cation outcomes are welfare-wise dominated by
“less fair” ones occurs is troublesome and should lead scholars to
reevaluate popular methodologies by which we understand the
impact of machine learning on di�erent social populations.

1.1 Related Work
Research in fair machine learning has largely centered on com-
putationally de�ning “fairness” as a property of a classi�er and
then showing that techniques can be invented to satisfy such a
notion [2–5, 5, 6, 9–18]. Since most methods are meant to apply to
learning problems generally, many such notions of fairness center
on parity-based metrics about a classi�er’s behavior on various
legally protected social groups rather than on matters of welfare.

Most of the works that do look toward a welfare-based frame-
work for interpreting appeals to fairness sit at the intersection of
computing and economics. Mullainathan [19] also makes a com-
parison between policies as set by machine learning systems and
policies as set by a social planner. He argues that systems that make
explicit their description of a global welfare function are less likely
to perpetrate biased outcomes and are more successful at ameliorat-
ing social inequities. Heidari et al. [20] propose using social welfare
functions as fairness constraints on loss minimization programs.
They suggest that a learner ought to optimize her classi�er while in
Rawls’ original position. As a result, their approach to social welfare
is closely tied with considerations of risk. Rather than integrate

social welfare functions into the supervised learning pipeline, we
claim that the result of an algorithmic classi�cation system can
itself be considered a welfare-impacting allocation. Thus, our work
simply takes a generic �-fair learning problem as-is, and then con-
siders the welfare implications of its full path of outcomes for all
� 2 [0, 1] on individuals as well as groups. Attention to the potential
harms of machine learning systems is not new, of course. Within
the fairness literature, Corbett-Davies & Goel [21] and Liu et al.
[22] devote most of their analyses to the person-impacting e�ects
of algorithmic systems. We agree that these e�ects are relevant to
the question of fairness, but our results di�er in their methodologi-
cal focus: we introduce a technique that derives the full range of
welfare e�ects achieved by a fair classi�cation algorithm.

The techniques that we use to translate fair learning outcomes
into welfare paths are related to a number of existing works. The
proxy fairness constraint in our instantiation of the �-fair SVM
problem original appeared in Zafar et al.’s work on restricting the
disparate impact of machine classi�ers [5]. Their research intro-
duces this particular proxy fairness constrained program and shows
that it can be e�ciently solved and well approximates target fair-
ness constraints. We use the constraint to demonstrate our overall
�ndings about the e�ect of fairness criteria on individual and group
welfares. We share some of the preliminary formulations of the
fair SVM problem with Donini et al. [17] though they focus on the
statistical and fairness guarantees of the generalized ERM program.
Lastly, though work on tuning hyperparameters of SVMs and the
solution paths that result seem far a�eld from questions of fairness
and welfare, our analysis on the e�ect of �� fairness perturbations
on welfare take advantage of methods in that line of work [23–27].

2 PROBLEM FORMALIZATION
Our framework and results are motivated by those algorithmic
use cases in which considerations of fairness and welfare stand
alongside those of e�ciency. Because our paper connects machine
classi�cation and notions of algorithmic fairness with conceptions
of social welfare, we �rst provide an overview of the notation and
assumptions that feature throughout our work.

In the empirical loss minimization problem, a learner seeks a
classi�er h that issues the most accurate predictions when trained
on set of n data points {xi , zi ,�i }ni=1. Each triple gives an individ-
ual’s feature vector xi 2 X, protected class attribute zi 2 {0, 1}, and
true label �i 2 {�1,+1}.1 A classi�er that assigns an incorrect label
h(xi ) , �i incurs a penalty.

The empirical risk minimizing predictor is given by

h
⇤ := argmin

h2H

nX

i=1
`(h(xi),�i )

where hypothesis h : X ! R gives a learner’s model, the loss func-
tion ` : R⇥ {�1,+1} ! R gives the penalty incurred by a prediction,
and H is the hypothesis class under the learner’s consideration.
Binary classi�cation systems issue predictions h(x) 2 {�1,+1}.

Notions of fairness have been formalized in a variety of ways in
the machine learning literature. Though Dwork et al.’s [4] initial
conceptualization remains prominent and in�uential, much work

1Though individuals in a dataset will typically be coded with many protected class
attributes, in this paper we will consider only a single sensitive attribute of focus.
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has since de�ned fairness as a parity notion applied across di�erent
protected class groups [3, 5, 7, 8, 17, 18]. The following de�nition
gives the general form of these types of fairness criteria.

De�nition 2.1. A classi�er h satis�es a general group-based no-
tion of �-fairness if

��E[�(`,h, xi ,�i ) |Ezi=1] � E[�(`,h, xi ,�i ) |Ezi=0]��  � (1)

where � is some function of classi�er h performance, and Ezi=0 and
Ezi=1 are events that occur with respect to groups z = 0 and z = 1
respectively.

Further speci�cations of the function � and the events E instan-
tiate particular group-based fairness notions. For example, when
�(`,h, xi ,�i ) = h(xi ) and Ezi refers to the events in which �i = +1
for each group zi 2 {0, 1}, De�nition 2.1 gives an �-approximation
of equality of opportunity [3].When�(`,h, xi ,�i ) = `(h(xi ),�i ) and
Ezi refers to all classi�cation events for each group zi , De�nition
2.1 gives the notion of �-approximation of overall error rate balance
[7]. Notice that as � increases, the constraint loosens, and the solu-
tion is considered “less fair.” As � decreases, the fairness constraint
becomes more strict, and the solution is considered “more fair.”

Mapping classi�cation outcomes to changes in individuals’ wel-
fares gives a useful method of analysis for many data-based algorith-
mic systems that are involved in resource distribution pipelines. In
particular, we consider tools that issue outcomes uniformly ranked,
or preferred, by those individuals who are the subjects of the system.
That is, individuals agree on which outcome is preferred. Examples
of such systems abound: applicants for credit generally want to be
found eligible; candidates for jobs generally want to be hired, or at
least ranked highly in their pool. These realms are precisely those
in which fairness considerations are urgent and where fairness-
adjusted learning methods are most likely to be adopted.

3 WELFARE IMPACTS OF FAIRNESS
CONSTRAINTS

The central inquiry of our work asks how fairness constraints as
popularized in the algorithmic fairness community relate to welfare-
based analyses that are dominant in economics and policy-making
circles. Do fairness-adjusted optimization problems actually make
marginalized groups better-o� in terms of welfare? In this section,
we work from an empirical risk minimization (ERM) program with
generic fairness constraints parametrized by a tolerance parameter
� > 0 and trace individuals’ and groups’ welfares as a function of
� . We assume that an individual bene�ts from receiving a positive
classi�cation, and thus we de�ne group welfare as

Wk =
1
nk

X

i |zi=k

h(xi ) + 1
2

, k 2 {0, 1} (2)

where nk give the number of individuals in group z = k . We note
thatWk can be de�ned in ways other than (2), which assumes that
positive classi�cation are always and onlywelfare-enhancing. Other
work has considered the possibility that positive classi�cations may
in fact make individuals worse-o� if they are false positives [22].
The de�nition ofWk can be generalized to account for these cases.

First, in Section 3.1, we present an instantiation of the �-fair
ERM problem with a fairness constraint proposed in prior work in

algorithmic fairness. We work from the Soft-Margin SVM program
and derive the various dual formulations that will be of use in the
following analyses. In Section 3.2, we move on to show how �� per-
turbations to the fairness constraint in the �-fair ERM problem yield
changes in classi�cation outcomes for individuals and by extension,
how they impact a group’s overall welfare. Our approach, which
draws a connection between fairness perturbations and searches
for an optimal SVM regularization parameter, tracks changes in an
individual’s classi�cation by taking advantage of the codependence
of variables in the dual of the SVM. By perturbing the fairness
constraint, we observe changes in not its own corresponding dual
variable but in the corresponding dual of the margin constraints,
which relay the classi�cation fates of data points.

Leveraging this technique, we plot the “solution paths” of the
dual variable as a function of � , which in turn allows us to compute
group welfares as a function of � and draw out substantive results
on the dynamics of how classi�cation outcomes change in response
to �-fair learning. We prove that stricter fairness standards do not
necessarily support welfare-enhancing outcomes for the disadvan-
taged group. In many such cases, the learning goal of ensuring
group-based fairness is incompatible with the Pareto Principle.

De�nition 3.1 (Pareto Principle). Let x ,� be two social alternatives.
Let ⌫i be the preference ordering of individuals i 2 [n], and ⌫P be
the preference ordering of a social planner. The planner abides by
the Pareto Principle if x ⌫P � whenever x ⌫i � for all i .

In welfare economics, the Pareto Principle is a standard require-
ment of social welfare functionals—it would appear that the se-
lection of an allocation that is Pareto dominated by an available
alternative would be undesirable and even irresponsible! Neverthe-
less, we show that applying fairness criteria to loss minimization
tasks in some cases do just that. We perform our analysis on the
Soft-Margin SVM optimization problem and, for concreteness, work
with a well-known fairness formulation in the literature. However,
we note that our methods and results apply to fairness-constrained
convex loss minimization programs more generally.

We also show that this method of analysis can form practical
tools. In Section 3.3, we present a computationally e�cient algo-
rithmic implementation of our analyses, �tting full welfare solution
paths for all � 2 [0, 1] values in a time complexity that is on the
same order as that of a single SVM �t. We close this section by work-
ing from the shadow price of the fairness constraint to derive local
and global sensitivities of the optimal solution to �� perturbations.

3.1 Setting up the �-fair ERM program
The general fairness-constrained empirical loss minimization pro-
gram can be written as

minimize
h 2 H

`(h(x),�)

subject to fh (x,�)  �

(3)

where `(h(x),�) gives the empirical loss of a classi�er h 2 H on
the datasetX. To maximize accuracy, the learner ought to minimize
0-1 loss; however because the loss function `0�1 is non-convex, a
convex surrogate loss such as hinge loss (`h ) or log loss (`log) is
frequently substituted in its place to ensure that globally optimal
solutions may be e�ciently found. fh (x,�)  � gives a group-based
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fairness constraint of the type given in De�nition 2.1, where � > 0 is
the unfairness “tolerance parameter”—a greater � permits a greater
group disparity on a metric of interest; a smaller � more tightly
restricts the level of permissible disparity.

We examine the behavior of fairness-constrained linear SVM
classi�ers, though we note that our techniques generalize to nonlin-
ear kernels SVMs, since interpretations of the dual of the SVM and
the full SVM regularization path are the same with kernels [24]. Our
learner minimizes hinge loss with L1 regularization; equivalently,
she seeks a Soft-Margin SVM that is “�-fair.” Both SVM models
and “fair training” approaches are in broad circulation. The fair
empirical risk minimization program is thus given as

minimize
� ,b

1
2
k� k2 +C

nX

i=1
�i

subject to �i (�
|xi + b) � 1 + �i � 0, (�-fair Soft-SVM)

�i � 0,
f�,b (x,�)  �

where the learner seeks SVM parameters � ,b; �i are non-negative
slack variables that violate the margin constraint in the Hard-
Margin SVM problem �i (�|xi + b) � 1 � 0, and C > 0 is a hyper-
parameter tunable by the learner to express the trade-o� between
preferring a larger margin and penalizing violations of the margin.
f�,b (x,�) is the group parity-based fairness constraint.

The abundant literature on algorithmic fairness presents a long
menu of options for the various forms that f�,b could take, but
generally speaking, the constraints are non-convex. As such, much
work has enlisted methods that depart from directly pursuing e�-
cient constraint-based convex programming techniques in order to
solve them [5, 6, 9, 16, 18]. Researchers have also devised convex
proxy alternatives, which have been shown to approximate the
intended outcomes of original fairness constraints well [5, 17, 28].
In particular, in this paper, we work with the proxy constraint
proposed by Zafar et al. [5], which constrains disparities in covari-
ance between group membership and the (signed) distance between
individuals’ feature vectors and the hyperplane decision boundary:

f�,b (x,�) =
������
1
n

nX

i=1
(zi � z̄) (�

|xi + b)
������  � (4)

z̄ re�ects the bias in the demographic makeup of X: z̄ = 1
n
Pn
i=1 zi .

Let (�-fair-SVM1-P) be the Soft-Margin SVM program with this
covariance constraint. The corresponding Lagrangian is

LP (� ,b,� ,�, µ,�1,�2) =

1
2
k� k2 +C

nX

i=1
�i �

nX

i=1
�i �

nX

i=1
µi (�i (�

|xi + b) � 1 + �i )

� �1
⇣
� �

1
n

nX

i=1
(zi � z̄) (�

|xi + b)
⌘

(�-fair-SVM1-L)

� �2
⇣
� �

1
n

nX

i=1
(z̄ � zi ) (�

|xi + b)
⌘

where � 2 Rd ,b 2 R, � 2 Rn are primal variables. The (non-
negative) Lagrange multipliers �, µ 2 Rn correspond to the n non-
negativity constraints �i � 0 and the margin-slack constraints

�i (�|xi + b) � 1 + �i � 0 respectively. The multipliers �1,�2 2 R
correspond to the two linearized forms of the absolute value fair-
ness constraint. By complementary slackness, dual variables reveal
information about the satisfaction or violation of their correspond-
ing constraints. The analyses in the subsequent two subsections
will focus on these interpretations.

By the Karush-Kuhn-Tucker (KKT) conditions, at the solution of
the convex program, the gradients of L with respect to � , b, and �i
are zero. Plugging in these conditions, the dual Lagrangian is

LD (µ,� ) = �
1
2

������
nX

i=1
µi�ixi �

�

n

nX

i=1
(zi � z̄)xi

������
2

+

nX

i=1
µi � ��� ���

(5)

where � = �1 ��2. The dual maximizes this objective subject to the
constraints µi 2 [0,C] for all i 2 [n] and

P
i=1 µi�i = 0. We thus

arrive at the Wolfe dual problem

maximize
µ,� ,V

�
1
2

������
nX

i=1
µi�ixi �

�

n

nX

i=1
(zi � z̄)xi

������
2

+

nX

i=1
µi �V�

subject to µi 2 [0,C], i = 1, . . . ,n,
(�-fair-SVM1-D)

nX

i=1
µi�i = 0,

� 2 [�V ,V ]

where we have introduced the variable V to eliminate the absolute
value function ��� �� in the objective. Notice that when � = 0 and
neither of the constraints bind, we recover the standard dual SVM
program. Since we are concerned with fair learning that does alter
an optimal solution, we consider cases where V is strictly positive.
We introduce additional dual variables �� and �+, corresponding
to the � 2 [�V ,V ] constraint and derive the Lagrangian

L (µ,� ,V , ��, �+) = �
1
2

������
nX

i=1
µi�ixi �

�

n

nX

i=1
(zi � z̄)xi

������
2

+

nX

i=1
µi

�V� + � (�� � �+) +V (�� + �+)

Under KKT conditions, �� + �+ = � and

�
⇤ =

n(n(�� � �+) +
Pn
i=1 µi�i hxi , ui)

kuk2
(6)

where u =
Pn
i=1 (zi �z̄)xi geometrically gives some group-sensitive

“average" of x 2 X. We can now rewrite (�-fair-SVM1-D) as

maximize
µ,��,�+

�
1
2

������
nX

i=1
µi�i (I � Pu)xi

������
2

+

nX

i=1
µi

+
2n
P
i µi�i hxi , ui + n2 (�� � �+)

2kuk2
(�� � �+)

subject to µi 2 [0,C], i = 1, . . . ,n,
nX

i=1
µi�i = 0, (�-fair SVM2-D)

��, �+ � 0,
�� + �+ = �
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where I , Pu 2 Rd⇥d . The former is the identity matrix, and the latter
is the projection matrix onto the vector u. As was also observed
by Donini et al., the � = 0 version of (�-fair SVM2-D) is equivalent
to the standard formulation of the dual SVM program with Kernel
K (xi , xj ) = h(I � Pu)xi , (I � Pu)xj i [17].

Since we are interested in the welfare impacts of fair learning
when fairness constraints do have an impact on optimal solutions,
we will assume that the fairness constraint binds. For clarity of
exposition, we assume that the positive covariance constraint binds,
and thus that �� = 0 and �+ = � in (�-fair SVM2-D). This is without
loss of generalization—the same analyses apply when the negative
covariance constraint binds. The dual �-fair SVM program becomes

minimize
µ

1
2

������
nX

i=1
µi�i (I � Pu)xi

������
2

�

nX

i=1
µi +

n� (2
P
i µi�i hxi , ui � n� )

2kuk2

subject to µi 2 [0,C], i = 1, . . . ,n, (�-fair SVM-D)
nX

i=1
µi�i = 0

We will work from this formulation of the constrained optimization
problem for the remainder of the paper.

3.2 Impact of Fair Learning on
Individuals’ Welfares

We now move on to investigate the e�ects of perturbing a �xed
�-fair SVM by some �� on the classi�cation outcomes that are is-
sued. We ask, “How are individuals and groups’ classi�cations, and
thus their welfares, impacted when a learner tightens or loosens a
fairness constraint?” The key insight that drives our methods and
results is that rather than perform sensitivity analysis directly on
the dual variable corresponding to the fairness constraint—which,
as we will see in Section 3.4, only gives information about the
change in the learner’s objective value—we track changes in the
classi�er’s behavior by analyzing the e�ect of �� perturbations
on another set of dual variables: µi that correspond to the primal
margin constraints. Each of these n dual variables indicate whether
its corresponding vector xi is correctly classi�ed, lies in the margin,
or incorrectly classi�ed. Leveraging how these µi change as a func-
tion fo � thereby allows us to track the solution paths of individual
points and by extension, compute group welfare paths.

De�ne a function p (� ) : R! R that gives the optimal value of
the �-fair loss minimizing program in (�-fair SVM1-P), which by
duality is also the optimal value of (�-fair SVM-D). We begin at a
solution p (� ) and consider changes in classi�cations at the solution
p (� + �� ), where �� are perturbations can be positive or negative,
so long as � + �� > 0. At an optimal solution, the classi�cation
fate of each data point xi is encoded in the dual variable µ⇤i , which
is a function of � . µi (� ) is the �-parameterized solution path of µi
such that at any particular solution p (� ), the optimal value of the
dual variable µ⇤i = µi (� ). As a slight abuse of notation, we reserve
notation µi (� ) for the functional form of the solution path and write
µ
�
i ; to refer to the value of the dual variable at a given � .

L���� 3.2. The dual variable paths µi (� ) for all i 2 [n] are
piecewise linear in � .

Though this lemma seems merely of technical interest, it is
a workhorse result for both our methodological contributions—
our analytical results and our computationally e�cient algorithm,
which converts fairness constraints to welfare paths—as well as
our substantive fairness results about how fairness perturbations
impact individual and learner welfares. The algorithm we present
in Section 3.3, performs full welfare analysis for all values of �
in a computationally e�cient manner by taking advantage of the
piecewise linear form of individual and group welfares. Piecewise
linearity also sets the stage for the later substantive results about
the tension between fairness improvements and the Pareto Prin-
ciple. We thus walk through the longer proof of this key result
in the main text of the paper as it provides important exposition,
de�nitions, and derivations for subsequent results.

P����. Let D� be the value of the objective function in (�-fair
SVM-D). By the dual formulation of the Soft-Margin SVM, we can
use the value of @D�

@µ j to partition the set of indices j 2 [n] in a way
that corresponds to the classi�cation fates of individual vectors xj
at the optimal solution:

@D�

@µ j
> 0 �! µ

�
j = 0, and j 2 F

� (7)

@D�

@µ j
= 0 �! µ

�
j 2 [0,C], and j 2M

� (8)

@D�

@µ j
< 0 �! µ

�
j = C, and j 2 E

� (9)

Hence, xj are either correctly classi�ed free vectors (7), vectors in
the margin (8), or error vectors (9). We track membership in these
sets by letting {F ,M, E}� be the index set partition at the �-fair
solution. To analyze the impact that applying a fairness constraint
has on individuals’ or groups’ welfares, we track the behavior of
@D�

@µ j and observe how vector index membership in sets F � ,M� ,
and E� change under a perturbation to � . This information will
in turn reveal how classi�cations change or remain stable upon
tightening or loosening the fairness constraint.

Fairness perturbations do not always shu�e data points across
the di�erent membership sets F � ,M� , and E� . It is clear that for
j 2 {F , E}� , so long as a perturbation of �� does not cause @D�

@µ j
to �ip signs or to vanish to 0, j will belong to the same set and
h
� (xj ) = h

�+�� (xj ) where h� (xj ) gives the �-fair classi�cation
outcome for xj . In these cases, an individual’s welfare is una�ected
by the change in the fairness tolerance level from � to � + �� .

In contrast, vectors xj with j 2 M
� are subject to a di�erent

condition to ensure that they stay in the margin: @D�

@µ j =
@D�+��

@µ j =

0, i.e., perturbing by �� does not lead to any changes in @D�

@µ j :

@D�

@µ j
=

nX

i=1
µi�i (I � Pu)xi�j (I � Pu)xj +

n��j hxj , ui
kuk2

+ b�j � 1 = 0

(10)

for all j 2M� . Let r�,��j be the change in µ
�
j upon perturbing � by

�� , then we have

µ
�+��
j = µ

�
j + r

�,��
j (11)
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recalling that µ�j is the value of µ j at the optimal solution p (� ). Let
r�,�� 2 Rn+1 be the vector of µ�i sensitivities to perturbations ��
with r�,��0 as the change in the o�set b. For all unshu�ed j 2M

� ,
we can compute r�,��j by taking the �nite di�erence of (10) with
respect to a �� perturbation,
nX

i=1
r
�,��
i �i�j h(I � Pu)xi , (I � Pu)xj i + r�,��0 �j =

�n�j��

kuk2
hu, xj i

It is clear that r�,��i = 0 for all i that are left unshu�ed in the
partition {F , E}� . For these “stable ranges” where no i changes its
index set membership, we can simplify the previous expression by
summing over only those r�,��i where i 2M� :
X

i 2M�

r
�,��
i �i�j h(I � Pu)xi , (I � Pu)xj i + r�,��0 �j =

�n�j��

kuk2
hu, xj i

Thus we can compute r�,��i by inverting the matrix

K
� =

*...................
,

0 �1 �2 . . . � |M� |

�1

... �i�j h(I � Pu)xi , (I � Pu)xj i

�2

� |M� |

+///////////////////
-

2 R( |M
�
|+1)⇥( |M�

|+1)

(12)

where indices are renumbered to only re�ect i, j 2M� . This matrix
is invertible so long as the margin is not empty and the Kernel
K (xi , xj ) = h(I � Pu)xi , (I � Pu)xj i forms a positive de�nite matrix.
Since the objective function in (�-fair SVM-D) is quadratic, a su�-
cient condition forK� to be invertible is that the objective is strictly
convex—we assume this as a technical condition.2 The sensitivities
of µ�j for j 2M� to �� perturbations are given by

r�,�� = (K� )�1
✓
�n

kuk2
v
◆

|               {z               }
r �

��, where v =

2666666666664

0
...

�j hu, xj i
...

3777777777775
2 R |M

�
|+1

(13)

Plugging this back into (11), we have

µ
�+��
j = µ

�
j +
✓⇣
K
�
⌘�1 ⇣ �n

kuk2
v
⌘◆

j|                    {z                    }
r �j

�� (14)

Hence, for all j 2 M� that stay in the margin, the solution path
function µ j (� ) is linear in � . For j 2 {F , E}� that stay in their
partition sets, µ j (� + �� ) = µ j (� ), so the function is constant.

2We mention the case in which the margin is empty in Section 3.3, though we refer the
interested reader to the Appendix for a full exposition of how µ�j are updated when
the margin is empty and as a result, we cannot compute how i move across index sets
via the sensitivities r .

When �� perturbations do result in changes in the partition,
there are four ways that indices could be shu�ed across sets:

(1) j 2 E
� moves intoM�+��

(2) j 2 F
� moves intoM�+��

(3) j 2M
� moves into F �+��

(4) j 2M
� moves into E�+��

Since index transitions only occur by way of changes to the margin,
we need now only con�rm that each of these transitions maintains
continuous µ j (� ) paths for all j 2 [n] in order to conclude the proof
that the paths are piecewise-linear. ⇤

The linearity of paths µ j (� ) for j 2 M� gives conditions on
the ranges of � wherein individuals’ classi�cation outcomes do
not change. As such, for any given tolerance parameter � , we can
compute the �� perturbations that yield no changes to individuals’
welfares. The following Proposition gives the analytical form of
these stable regions, where although fairness appears to be “improv-
ing” or “worsening,” the adjusted learning process has no material
e�ects on the classi�catory outcomes that individuals receive.

P���������� 3.3. Denote the optimal µ⇤j values at an �-fair SVM
solution as µ�j for j 2 [n]. Let

r j =
✓
(K� )�1 (

�n

kuk2
v)
◆

j
with K� and v as de�ned in (12) and (13),

dj =
X

i 2M�

ri�i�j h(I � Pu)xi , (I � Pu)xj i + r0�j

�j = 1 �
✓ nX

i=1
µ
�
i �i (I � Pu)xi�j (I � Pu)xj +

n��j hxj , ui
kuk2

+ b�j

◆

(15)

All perturbations of � in the range �� 2
⇣
maxjmj ,minj Mj

⌘
where

mj =

8>>>>>>>>>>><>>>>>>>>>>>:

8><>:
�j
dj
, j 2 F

� ,dj > 0

�1, j 2 F
� ,dj < 0

min{
C�µ�j
r j ,

�µ�j
r j }, j 2M

�

8><>:
�1, j 2 E

� ,dj > 0
�j
dj
, j 2 E

� ,dj < 0

Mj =

8>>>>>>>>>>><>>>>>>>>>>>:

8><>:
1, j 2 F

� ,dj > 0
�j
dj
, j 2 F

� ,dj < 0

min{
C�µ�j
r j ,

�µ�j
r j }, j 2M

�

8><>:
�j
dj
, j 2 E

� ,dj > 0

1, j 2 E
� ,dj < 0

(16)

yield no changes to index memberships in the partition {F ,M, E}� .

We defer the interested reader to the Appendix for the full proof
of this Proposition, though we provide a sketch here. The result
follows from observing that the sensitivities r�i , 0 for i 2 M�

de�ned in (13) a�ect the values @D�

@µ j for all j 2 [n], and additional
conditions must hold to ensure that the vectors that are not on the
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margin are also unshu�ed by the fairness perturbation. De�ne

�
�
j = 1 �

✓ nX

i=1
µ
�
i �i (I � Pu)xi�j (I � Pu)xj +

n��j hxj , ui
kuk2

+ b�j

◆

(17)

d
�
j =

@D�

@µ j@�
=
X

i 2M�

r
�
i �i�j h(I � Pu)xi , (I � Pu)xj i + r

�
0�j (18)

The �� condition for stability of vectors xj for j <M� is given by
�
�
j

d
�
j

(19)

Recall the conditions of membership in sets F and E as given in
(7) and (9) respectively. The following observations are critical to
computing the bounds of the stable region:

For j 2 F � , perturbations �� that increase ��j do not threaten
j’s exiting the set; if �� decreases ��j , then j can enterM�+�� .

Inversely, for j 2 E� , perturbations �� that decrease ��j ensure
that j stays in the same partition, i.e., j 2 E�+�� . Perturbations that
increase ��j can cause j to shu�e intoM�+�� .

For j 2M� to stay in the margin, we need µ
�+��
j 2 [0,C]. Once

µ
�
j hits either endpoint of the interval, j risks shu�ing across to
F

�+�� or E�+�� .
Computing these transition inequalities results in a set of condi-

tions that ensure that a partition is stable. Since �� can be either
positive or negative, we take the maximum of the lower bounds
(mj ) and the minimum of the upper bounds (Mj ) to arrive at the
range of stable perturbations given in (16). We call the bounds of
this interval the “breakpoints” of the solution paths.

This Proposition reveals a mismatch between the ostensible
changes to the fairness level of an �-fair Soft-Margin SVM learning
process and the actual felt changes in outcomes by the individuals
who are subject to the system. This results from the simple fact that
the optimization problem captures changes in the learner’s optimal
solution but does not o�er such �ne-grained information on how
individuals’ outcomes vary as a result of �� perturbations. So long
as the fairness constraint is binding and its associated dual variable
� > 0, then tightening or loosening a fairness constraint does alter
the loss of the optimal learner classi�er—the actual SVM solution
changes—yet analyzed from the perspective of the individual agents
xi , so long as the �� perturbation occurs within the range given
by (16), classi�cations issued under this � + ��-fair SVM solution
are identical to those under the �-fair solution. Thus despite the
apparent more “fair” signal that a classi�er abiding by � + �� < �

sends, agents are made no better o� in terms of welfare. This result
is summarized in the following Corollary.

C�������� 3.4. Let {p (� ),W0 (� ),W1 (� )} be a triple expressing the
welfares of the learner, group z = 0, and group z = 1 under the �-fair
SVM solution. Then for any �� 2 (maxjmj , 0) wheremj is de�ned
in (16), {p (� ),W0 (� ),W1 (� )} % {p (� +�� ),W0 (� +�� ),W1 (� +�� )}.

Once we have demarcated the limits of �� perturbations that
yield no changes to the partition, i.e., {F ,M, E}� = {F ,M, E}�+�� ,
we can move on to consider the welfare e�ects of �� perturbations
that exceed the stable region outlined in Proposition 3.3. At each

such breakpoint when �� reaches maxjmj or minj Mj as de�ned
in (16), the margin set changes:M� ,M�+�� . As such, r�+��j for
j 2M

�+�� must be recomputed via (13). These sensitivities hold
until the next breakpoint when the setM updates again.

We can associate a group welfare with the classi�cation scheme
at each of the breakpoints. As already illustrated, index partitions
are static in the stable regions around each breakpoint, so group
welfares will also be unchanged in these regions. As such, we need
only compute welfares at breakpoints to characterize the paths for
� 2 [0, 1]. This method of analysis allows practitioners to straight-
forwardly determine whether the next � breakpoint actually trans-
lates into better or worse outcomes for the group as a whole.

Of the four possible events that occur at a breakpoint, index
transitions between the partitionsM and E correspond to changed
classi�cations that a�ect group utilities. The following Proposi-
tion characterizes those breakpoint transitions that e�ect welfares
triples {p (� ),W0 (� ),W1 (� )} for the learner, group z = 0, and group
z = 1, that are strictly Pareto dominated by the welfare triple at a
neighboring � breakpoint. The full proof is left to the Appendix.

P���������� 3.5. Consider the welfare triple at the optimal �-fair
SVM solution given by {p (� ),W0 (� ),W1 (� )}. Let bL = maxjmj < 0
be the neighboring lower breakpoint where index ` = argmaxjmj ; let
bU = minj Mj > 0 be the neighboring upper breakpoint where index
u = argminj Mj , assuming uniqueness in the argmax and argmin.
If ` 2 E� and �` = �1, or if ` 2M� and �` = +1, then

{p (� + bL ),W0 (� + bL ),W1 (� + bL )}} � {p (� ),W0 (� ),W1 (� )}

If u 2 E� and �u = +1, or if u 2M� and �u = �1, then

{p (� ),W0 (� ),W1 (� )} � {p (� + bU ),W0 (� + bU ),W1 (� + bU )}

Thus minimizing loss in the presence of stricter fairness con-
straints need not correspond to monotonic gains or losses in the
welfare levels of social groups. Fairness perturbations do not have
a straightforward e�ect on classi�cations. Further, these results do
not only arise as an unfortunate outcome of using the particular
proxy fairness constraint suggested by Zafar et al [5]. So long as
the � parameter appears in the linear part of the dual Soft-Margin
SVM objective function, the µ j (� ) paths exhibit a piecewise linear
form characterized by stable regions and breakpoints. Hence, these
results apply to many proxy fairness criteria that have so far been
proposed in the literature [5, 17, 28]. Even when the dual variable
paths are not piecewise linear, so long as they are non-monotonic,
fairer classi�cation outcomes do not necessarily confer welfare
bene�ts to the disadvantaged group. Monotonicity in welfare space
is mathematically distinct from monotonicity in fairness space.

The preceding analyses show that although fairness constraints
are often intended to improve classi�cation outcomes for some
disadvantaged group, they in general do not abide by the Pareto
Principle, a common welfare economic axiom for deciding among
social alternatives. That is, asking that an algorithmic procedure
abide by a more stringent fairness criteria can lead to enacting
classi�cation schemes that actually make every stakeholder group
worse-o�. Here, the supposed “improved fairness” achieved by
decreasing the unfairness tolerance parameter � fails to translate
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into any meaningful improvements in the number of desirable
outcomes issued to members of either group.

T������ 3.6. Consider two fairness-constrained ERM programs
parameterized by �1 and �2 where �1 < �2. Then a decision-maker
who always prefers the classi�cation outcomes issued under the “more
fair” �1-fair solution to those under the “less fair” �2-fair solution does
not abide by the Pareto Principle.

3.3 Algorithm and Complexity
We build upon the previous section of translating fairness con-
straints into individual welfare outcomes by considering the opera-
tionalization of our analysis and its practicality. The algorithmic
procedure presented in this section computes � breakpoints and
tracks the solution paths of the µ j (� ) for all individuals. Hence,
the procedure enables the comparison of di�erent social groups’
welfares—where welfare is determined by the machine’s allocative
outcome—by aggregating the classi�cation outcomes of all individ-
uals j in a group z. Algorithm 1 outputs two useful fairness-relevant
constructs that have as yet not been explored in the literature: 1)
solution paths µ j (� ) for j 2 [n] tracking individuals’ welfares, and
2) full � parameterized curves tracking groups’ welfares.

The analysis of the previous section forms the backbone of the
main update rules that construct the µ j (� ) paths in Algorithm 1.
In particular the values r�j , �

�
j , and d

�
j as de�ned in (13), (17), and

(18) respectively are key to computing the � breakpoints, which in
turn fully determine the piecewise linear form of µ j (� ). There is,
however, one corner case that the procedure must check that was
not discussed in the preceding section. We had previously required
that the matrix K� be invertible, which is the case whenever our
objective function is strictly convex. But if the margin is empty, the
standard update procedure, which computes sensitivities r�j and
K
� , will not su�ce. The KKT optimality condition

Pn
i=1 µi�i = 0

requires that the multiple indices moving in the margin at once
must be positive and negative examples. For this reason we must
refer to a di�erent procedure to compute the � breakpoint at which
this transition occurs. For continuity of the main text of this paper,
the full exposition of this analysis is given in the Appendix.

The following complexity result highlights the practicality of
implementing the fairness-to-welfare mapping in Algorithm 1 to
track the full solution paths of an �-fair SVM program. We note that
standard SVM algorithms such as LibSVM run in O (n3), and thus
once the algorithm has been initialized with the unconstrained SVM
solution, the complexity of computing both the full individual solu-
tion paths µ j (� ) and the full group welfare curves {W0 (� ),W1 (� )}
is on the same order as that of computing a single SVM solution.

T������ 3.7. Each iteration of Algorithm 1 runs inO (n2+ |M|2).
For breakpoints on the order of n, the full run time complexity is
O (n3 + n |M|2).

P����. Each iteration of the fairness-to-welfare algorithm re-
quires the inversion of matrix K�

2 R |M
�
|+1 and the computations

of r�j 2 R
|M

�
| for j 2M� , and ��j and d�j for j 2 {F , E}� .

The standard Gauss-Jordan matrix inversion technique runs in
O ( |M|3), but we take advantage of partition update rules to lower
the number of computations: Since at each new breakpoint, the

ALGORITHM 1: Fairness-to-welfare solution paths as a function of �
Input: set X of n data points {xi , zi , �i }
Output: solutions paths µ (� ) and group welfare curves {W0 (� ),W1 (� ) }
µ0 = argminµ D (µ ) of (0-fair SVM-D);
� = 0, �� = 0;
|n0 | =

Pn
i=1 1[zi = 0], |n1 | =

Pn
i=1 1[zi = 1];

while � < 1 do
W0 = 0,W1 = 0;
for each µ�i do

update {F ,M, E }� according to (7), (8), (9);
if (µi < C & �i = 1) | | (µi = C & �i = 0) then

Wzi =Wzi + 1;
end

end
W0 (� ) =

W0
n0

;W1 (� ) =
W1
n1

;
if |M�

| = 0 then
�� = mini Mi as given in (26);
update {F ,M, E }� according to (28) and (29);
� = � + �� ;

end
compute r � , d � according to (13), (18);
�� = mini Mi as given in (16);
µ�+��i = µ�i + r

�
i �� for i 2 M� , µ�i = µ�+��i for i 2 {F , E }� ;

� = � + �� ;
end
return (µ (� ),W0 (� ),W1 (� ))

partition tends to change because of additions or eliminations of a
single index j from the setM, we can use the Cholesky decomposi-
tion rank-one update or downdate to ease the need to recompute
the full matrix inverse at every iteration, thereby reducing the com-
plexity of the operation toO ( |M|2). Computing the stability region
conditions for j 2 {F , E} requiresO

⇣
(n� |M|) |M|

⌘
steps. As such,

at each breakpoint, the total computational cost is O ( |M|2 + n2).
The number of breakpoints for each full run of the algorithm

depends on the data distribution and how sensitive the solution is
to the constraint. As a heuristic, datasets whose fairness constraints
bind for smaller � have fewer breakpoints. Previous empirical results
on the full SVM path for L1 and L2 regularization have found
that the number of breakpoints tends to be on the order of n [24–
27]. Thus after initialization with 0-fair SVM solution, the �nal
complexity for the algorithm is O (n3 + n |M|2). ⇤

3.4 Impact of Fair Learning on
Learner’s Welfare

Having proven the main welfare-relevant sensitivity result for
groups, we return to more standard analysis of the e�ect of ��
perturbations on the learner’s loss. In this case, we directly solve
for the dual variable of the fairness constraint. Recall � ⇤ from (23):

�
⇤ = � ⇤1 � �

⇤
2 =

n(n(�� � �+) +
Pn
i=1 µi�i hxi , ui)

kuk2
(20)

By complementary slackness, one of �� and �+ is zero, and the
other is � . In particular, if �� = 0, then �+ = � , then we know
that � > 0. Thus the original fairness constraint that binds is the
upper bound on covariance, suggesting that the optimal classi�er
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must be constrained to limit its positive covariance with group
z = 1. If �+ = 0, then �� = � and � < 0, and the classi�er must be
constrained to limit its positive covariance with group z = 0.

We can interpret the value of the dual variable Lagrange mul-
tiplier as the shadow price of the fairness constraint. It gives the
additional loss in the objective value that the learner would achieve
if the fairness constraint were in�nitesimally loosened. Whenever a
fairness constraint binds, its shadow price is readily computable and
is given by ��� ⇤��. It bears noting that because (�-fair Soft-SVM) is not
a linear program, ��� ⇤�� can only be interpreted as a measure of local
sensitivity, valid only in a small neighborhood around an optimal
solution. But through an alternative lens of sensitivity analysis, we
can derive a lower bound on global sensitivity due to changes in the
fairness tolerance parameter � . By writing � as a perturbation vari-
able, we can perform sensitivity analysis on the same �-constrained
problem. Returning to the perturbation function p (� ), we have

p (� ) � sup
µ,�
{L (µ⇤,� ⇤) � � ��� ⇤��} (21)

where L (µ⇤,� ⇤) gives the solution to the 0-fair SVM problem.

L (µ⇤,� ⇤) = max
µ2[0,C]n,�

�
1
2

������
nX

i=1
µi�i (I � Pu )xi

������
2

+
X

i=1
µi (22)

The perturbation formulation given in (21) is identical in form to
the original program (�-fair-SVM1-P) but gives a global bound on
p (� ) for all � 2 [0, 1]. Since (21) gives a lower bound, the global
sensitivity bound yields an asymmetric interpretation.

P���������� 3.8. If �� < 0 and ��� ⇤�� � 0, thenp (�+�� )�p (� ) �
0. If�� > 0 and ��� ⇤�� < � for small� , thenp (�+�� )�p (� ) 2 [����, 0],
and is thus also small in magnitude.

Proposition 3.8 shows that tightening the fairness constraint when
its shadow price is high leads to a great increase in learner loss, but
loosening the fairness constraint when its shadow price is small
leads only to a small decrease in loss.

4 EXPERIMENTS
To demonstrate the e�cacy of our approach, we track the im-

pact of �-fairness constrained SVM programs on the classi�cation
outcomes of individuals in the Adult dataset. The target variable in
the dataset is a binary value indicating whether the individual has
an annual income of more or less than $50,000. If such a dataset
were used to train a tool to be deployed in consequential resource
allocation—say, for the purpose of determining access to credit—
then classi�cation decisions directly impact individuals’ welfares.

Individual solution paths and relative group welfare changes
are given in Figure 1. As � increases from left to right, the fairness
constraint is loosened, and outcomes become “less fair.” In the
case of the �-fair SVM solution to the Adult dataset, the fairness
constraint ceases to bind at the optimal solution when � ⇡ 0.175.
The top panel shows example individual piecewise linear paths of
dual variables µi (� ), providing a visual depiction of how individual
points can transition across index sets: from µi = 0, i 2 F and being
correctly labeled, to µi 2 (0, 1), i 2M, being correctly labeled but
in margin; to µi = 1, i 2 E and being incorrectly labeled. Solid
paths indicate individuals coded female; dashed paths indicate those

codedmales. As the top panel of Figure 1 shows, the actual “journey”
of these paths are varied as � changes.

As expected, tightening the fairness constraint in the �-fair pro-
gram does tend to lead to improved welfare outcomes for females
as a group (more female individuals receive a positive classi�ca-
tion), while males experience a relative decline in group welfare
(receiving fewer positive classi�cations). However, as suggested by
our results in Section 3.2, these welfare changes are not monotonic
for either group. Tightening the fairness constraint could lead to
declines in both groups’ welfares, demonstrating that preferring
more fair solutions in this predictive model does not abide by the
Pareto Principle. We highlight an instance of this result in the bot-
tom panel of Figure 1, where orange dashed lines to the left of black
ones mark o� solutions where “more fair” outcomes (orange) are
Pareto-dominated by “less fair” (black) ones. A practitioner working
in a domain in which welfare considerations might override parity-
based fairness ones may prefer the outcomes of a fair learning
procedure with � ⇡ 0.045 to one with � ⇡ 0.015. Additional plots
showing absolute changes in group welfare and optimal learner
value are given in the Appendix.

5 DISCUSSION
The question that leads o� this paper—How do leading notions of
fairness as de�ned by computer scientists map onto longer-standing
notions of social welfare?—sets an important agenda to come for
the �eld of algorithmic fairness. It asks that the community look
to disciplines that have long considered the problem of allocating
goods in accordance with ideals of justice and fairness. For example,
the notion of welfare in this paper draws from work in welfare and
public economics. The outcomes issued by an optimal classi�er can,
thus, be interpreted using welfare economic tools developed for
considerations of social e�ciency and equity. In an e�ort to situate
computer scientists’ notions of fairness within a broader under-
standing of distributive justice, we also show that loss minimization
problems can indeed be mapped onto welfare maximization ones
and vice versa. For reasons of continuity, analyses of this correspon-
dence do not appear in the main text—we defer the interested reader
to the Appendix—though we present an abbreviated overview here.
We encourage readers to consider the main results of this paper,
which construct welfare paths out of fair learning algorithms, as a
part of this larger project of bridging the two approaches.

5.1 Bridging Fair Machine Learning and
Social Welfare Maximization

To highlight the correspondence between the machine learning
and welfare economic approaches to allocation, we show that loss
minimizing solutions can be understood aswelfaremaximizing ones
under a particular social welfare function. In the Planner’s Problem,
a planner maximizes social welfare represented as the weighted
sum of utility functions. Inverting the Planner’s Problem gives a
question concerning social equity: “Given a particular allocation,
what is the presumptive social weight function that would yield it as
optimal?” We show that the set of predictions issued by the optimal
classi�er of any loss minimization task can be given as the set
of allocations in the Planner’s Problem over the same individuals
endowedwith a set of welfare weights. Analyzing the distribution of
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Figure 1: Fairness-to-welfare solution paths for individuals (top panel) and groups (bottom panel) on the Adult dataset.

implied weights of individuals and groups o�ers a welfare economic
way of considering the “fairness” of classi�cations. We also derive a
converse result: “Given a social welfare maximizing allocation, what
model that can achieve an equivalent classi�cation?” Our solution’s
approach records the set of welfares, de�ned by the number of
positively labeled individuals, achievable for each social group.

5.2 Interpreting Welfare Alongside Fairness
Welfare economics can lend particular insights into formalizing
notions of distributional fairness and general insights into building
a “technical” �eld and methodology that grapples with normative
questions. The �eld is concerned with what public policies ought to
be, how to improve individuals’ well-beings, and what distribution
of outcomes are preferable. Answers to these questions appeal to
values and judgments that refer to more than just descriptive or
predictive facts about the world. The success of fair machine will
largely hang on how well it can adapt to a similar ambitious task.

However, welfare economics is not the only—nor should it even
serve as the main—academic resource for thinking through how
goods ought to be provisioned in a just society. In this moment of
broad appeal to the prowess of algorithmic systems, researchers in
computing are called on to advise on matters beyond their special-
ized expertise and training. Many of these matters require explicit
normative, political, and social-scienti�c reasoning. Insights and
methods from across the arts, humanities, social sciences, and nat-
ural sciences bear fruit in answering these questions.

This paper does not look to contribute a new fair learning algo-
rithm or a new fairness de�nition. We take a popular classi�cation
algorithm, the Soft Margin SVM, append a parity-based fairness
constraint, and analyze its implications on welfare. The constraint
that we center in the paper is just one concretization of a large
menu of fairness notions that have been o�ered up to now. The

method of analysis developed in the paper applies generally to
any convex formulations of these constraints, including versions of
balance for false positives, balance for false negatives, and equality
of opportunity that have circulated in the literature [17, 18, 28]. It
is important future work to investigate the welfare implications of
state-of-the-art fair classi�cation algorithms that the community
continues to develop, which can deal with a wider range of models
and constraints, including non-convex ones.

This paper asks that researchers in fair machine learning reeval-
uate not only their lodestars of optimality and e�ciency but also
their latest metrics of fairness. By viewing classi�cation outcomes
as allocations of a good, we incorporate considerations of indi-
vidual and group utility in our analysis of classi�cation regimes.
The concept of “utility” in evaluations of social policy remains
controversial, but in many cases of social distribution, utility con-
siderations provide a partial but still important perspective on what
is at stake within an allocative task. Utility-based notions of welfare
can capture the relative bene�t that a particular good can have on
a particular individual. If machine learning systems are in e�ect
serving as resource distribution mechanisms, then questions about
fairness should align with questions of “Who bene�ts?” Our results
show that many parity-based formulations of fairness do not ensure
that disadvantaged groups bene�t. Preferring a classi�er that better
accords with a fairness measure can lead to selecting allocations
that lower the welfare for every group. Nevertheless, there remain
reasons in favor of limiting levels of inequality not re�ected in
utilitarian calculus. In some cases, the gap between groups is itself
objectionable, and minimizing this di�erence overrides maximiz-
ing the absolute utility level of disadvantaged groups. But without
acknowledging and accounting for these reasons, well-intentioned
optimization tasks that seek to be “fairer” can further disadvantage
social groups for no reason but to satisfy a given fairness metric.
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6 APPENDIX
6.1 Dual derivations of the �-fair SVM program
In this Appendix section, we walk through the preliminary setup
of the �-fair SVM program given in Section 5.1 and present inter-
mediate derivations omitted from the main text.

Recall that the fair empirical risk minimization program of cen-
tral focus is

minimize
� ,b

1
2
k� k2 +C

nX

i=1
�i

subject to �i (�
|xi + b) � 1 + �i � 0, (�-fair Soft-SVM)

�i � 0,
f�,b (x,�)  �

The hyperplane parameters are � 2 Rd and b 2 R. The non-
negative �i allow the margin constraints to have some slack—this
is why these variables are commonly called “slack variables.” In the
Soft-Margin (as opposed to the Hard-Margin) SVM, the margin is
permitted to be less than 1. A slack variable �i > 0 corresponds
to a point xi having a functional margin of less than 1. There is
a cost associated with this margin violation, even though it need
not correspond to a classi�cation error. C > 0 is a hyperparameter
tunable by the learner to optimize this trade-o� between preferring
a larger margin and penalizing violations of the margin.

When we combine the general Soft-Margin SVM with the co-
variance parity constraint in (4) proposed by Zafar et al. [5], we
have the program

minimize
� ,b

1
2
k� k2 +C

nX

i=1
�i

subject to �i (�
|xi + b) � 1 + � � 0, (�-fair-SVM1-P)

������
1
n

nX

i=1
(zi � z̄) (�

|xi + b)
������  �

where z̄ re�ects the bias in the demographic makeup of X: z̄ =
1
n
Pn
i=1 zi . The corresponding Lagrangian is

kearns2018pre�entin�LP (� ,b, � ,�, µ,�1,�2)

=
1
2
k� k2 +C

nX

i=1
�i �

nX

i=1
�i �

nX

i=1
µi (�i (�

|xi + b) � 1 + �i )

� �1
⇣
� �

1
n

nX

i=1
(zi � z̄) (�

|xi + b)
⌘

(�-fair-SVM1-L)

� �2
⇣
� �

1
n

nX

i=1
(z̄ � zi ) (�

|xi + b)
⌘

where � 2 Rd ,b 2 R, � 2 Rn are Primal variables. The (non-
negative) Lagrange multipliers �, µ 2 Rn correspond to the n non-
negativity constraints �i � 0 and the margin-slack constraints
�i (�|xi + b) � 1 + �i � 0 respectively. The multiplier µi relays
information about the functional margin of its corresponding point
xi . If the margin is greater than 1 in the Primal, i.e., there is slack
in the constraint), then by complementary slackness, µi = 0. Oth-
erwise, if the constraint holds with equality, µi 2 (0,C]. When the

classi�er commits an error on xi , �i (�|xi + b) , and then by the
KKT conditions, µi = C .

The multipliers �1,�2 2 R correspond to the two linearized
forms of the absolute value fairness constraint. Notice that these
two constraints cannot simultaneously hold with equality for � > 0.
Thus, by complementary slackness again, we know that at least
one of �1,�2 is zero, and the other is strictly positive.

By the Karush-Kuhn-Tucker conditions, at the solution of the
convex program, the gradients of L with respect to � , b, and �i are
zero:

@L

@�
B 0) � =

nX

i=1
µi�ixi �

�

n
(
nX

i=1
(zi � z̄)xi )

@L

@b
B 0)

nX

i=1
µi�i =

�

n

nX

i=1
(zi � z̄) = 0

@L

@�i
B 0) �i + µi = C, i = 1, . . . ,n

Plugging in these optimality conditions, the dual Lagrangian is

LD (� , � ,�, µ,�1,�2) = �
1
2

������
nX

i=1
µi�ixi �

�

n

nX

i=1
(zi � z̄)xi

������
2

+

nX

i=1
µi � ��� ���

where we have � = �1 � �2, since at most one side of the fairness
constraint binds, thereby ensuring that at least one of �1 or �2
is 0. The dual maximizes this objective subject to the constraints
µi 2 [0,C] for all i and

P
i=1 µi�i = 0. Hence, we derive the full

dual problem

maximize
µ,� ,V

�
1
2

������
nX

i=1
µi�ixi �

�

n

nX

i=1
(zi � z̄)xi

������
2

+

nX

i=1
µi �V�

subject to µi 2 [0,C], i = 1, . . . ,n,
(�-fair-SVM1-D)

nX

i=1
µi�i = 0,

� 2 [�V ,V ]

where we have introduced the variable V to eliminate the absolute
value function ��� �� in the objective. Notice that when � = 0 and
neither of the constraints bind, we recover the standard dual SVM
program. Since we are concerned with fair learning that does in fact
alter an optimal solution, we consider cases in which V is strictly
positive. From this program, we introduce additional dual variables
�� and �+, corresponding to the � 2 [�V ,V ] constraint and derive
the Lagrangian

L (µ,� ,V , ��, �+) = �
1
2

������
nX

i=1
µi�ixi �

�

n

nX

i=1
(zi � z̄)xi

������
2

+

nX

i=1
µi

�V� + � (�� � �+) +V (�� + �+)

Under KKT conditions, �� + �+ = � and

�
⇤ =

n(n(�� � �+) +
Pn
i=1 µi�i hxi , ui)

kuk2
(23)

where u =
Pn
i=1 (zi � z̄)xi gives some group-sensitive geometric

“average" of x 2 X. We can subsequently rewrite (�-fair-SVM1-D)
as



Fair Classification and Social Welfare FAT* ’20, January 27–30, 2020, Barcelona, Spain

maximize
µ,��,�+

�
1
2

������
nX

i=1
µi�i (I � Pu)xi

������
2

+

nX

i=1
µi

+
2n
P
i µi�i hxi , ui + n2 (�� � �+)

2kuk2
(�� � �+)

subject to µi 2 [0,C], i = 1, . . . ,n,
nX

i=1
µi�i = 0, (�-fair SVM2-D)

��, �+ � 0,
�� + �+ = �

where I , Pu 2 Rd⇥d . The former is the identity matrix, and the latter
is the projection matrix onto the vector u. As was also observed
by Donini et al., the � = 0 version of (�-fair SVM2-D) is equivalent
to the standard formulation of the dual SVM program with Kernel
K (xi , xj ) = h(I � Pu)xi , (I � Pu)xj i [17].

Since we are interested in the welfare impacts of fair learning
when fairness constraints do have an impact on optimal solutions,
we will assume that the fairness constraint binds. For clarity of
exposition, we assume that the positive covariance constraint binds,
and thus that �� = 0 and �+ = � in (�-fair SVM2-D). This is without
loss of generalization—the same analyses apply when the negative
covariance constraint binds. The dual �-fair SVM program becomes

minimize
µ

1
2

������
nX

i=1
µi�i (I � Pu)xi

������
2

�

nX

i=1
µi +

n� (2
P
i µi�i hxi , ui � n� )

2kuk2

subject to µi 2 [0,C], i = 1, . . . ,n, (�-fair SVM-D)
nX

i=1
µi�i = 0

6.2 Algorithms
6.2.1 Finding the next breakpoint when |M�

| = 0.
When |M�

| = 0, the standard procedure that �nds the next break-
point by computing sensitivities to µi in the margin (i 2M� ) by
inverting the matrix K in (12) fails. Without r�i , we also cannot
compute changes to di for i not in the margin (i 2 {F , E}� ) as
de�ned in (18) to track when points enter the margin. As a result,
we need a special procedure to �nd the next breakpoint when the
margin becomes empty.

If the solution is to remain optimal, it must continue to abide
by KKT conditions; in particular

Pn
i=1 µi�i = 0. Notice then that if

the margin is empty, we have that
P
i 2E� µi�i = 0 = C

P
i 2E� �i ,

which means that there are equal numbers of +1 and �1 vectors
that are misclassi�ed. Thus at the next breakpoint, both +1 and �1
vectors will enter the margin at the same time, o�setting each other
exactly to retain the optimality of the solution.

Tracking how vectors enter the margin at the solution p (� ) re-
quires tracking sign changes of @D�

@µ :

nX

i=1
µi�i (I � Pu)xi�j (I � Pu)xj +

n��j hxj , ui
kuk2

+ b�j � 1
F
�

?
E�

0

We can perturb � by �� and narrow the range of eligible optimal b.
Consider how the SVM boundary splits the dataset. On the positive
side of the boundary, we have

b > �i

✓
1 �

nX

i=1
µi�i (I � Pu)xi�j (I � Pu)xj �

n��j hxj , ui
kuk2

◆

for i with �i = +1 and �i 2 F � , as well as �i = �1 and �i 2 E� .
Call this set of indices R. On the other hand,

b < �i

✓
1 �

nX

i=1
µi�i (I � Pu)xi�j (I � Pu)xj �

n��j hxj , ui
kuk2

◆

for i with �i = �1 and �i 2 F � , as well as �i = +1 and �i 2 E� .
Call this set of indices L. Let

s (� ) = 1 �
nX

i=1
µi�i (I � Pu)xi�j (I � Pu)xj �

n��j hxj , ui
kuk2

.Then we have the range

b 2 B� = [max
i 2R

�is (� ),min
i 2L

�is (� )] (24)

Perturbations of �� result in changes of

t (�� ) = ��i
n��hxj , ui
kuk2

so we can write

B� (�� ) = [max
i 2R

�is (� ) � t (�� ),min
i 2L

�is (� ) � t (�� )] (25)

In increasing the magnitude of �� , the intervalB� (�� ) shrinks until
it collapses onto a single value of b. The �� be the perturbation
when

max
i 2R

�is (� ) � t (�� ) = min
i 2L

�is (� ) � t (�� ) (26)

determines the next breakpoint. The indices

k = argmax
i 2R

�is (� ) � t (�� ), ` = argmin
i 2L

�is (� ) � t (�� ) (27)

leave their respective sets and enter the margin. The partition is
updated as:

M
�+�� = {k, `} (28)

{F , E}�+�� = {F , E}� � {k, `} (29)

6.3 Additional Figures
Figure 2 gives more information on the welfare impacts of �-fair
SVM-solutions on the Adult dataset. Increasing � from left to right
loosens fairness constraint, and classi�cation outcomes become
“less fair.” Paths level o� at � ⇡ 0.175 when constraint ceases to
bind at the optimal solution. The top panel shows that the learner
objective value monotonically decreases as the fairness constraint
loosens. The bottom panel gives the group-speci�c welfare change
at an �-fair SVM solution given as an absolute change in the num-
ber of positively labeled examples compared to the unconstrained
solution baseline.
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Figure 2: Impact of fair SVM learning on learner objective value (top panel) and group welfare given as absolute welfare
changes for female and male groups (bottom panel) on the Adult dataset.

6.4 Results on the Correspondence between
Loss Minimization and Social Welfare
Maximization

In the Planner’s Problem, a planner maximizes a social welfare
functional (SWF) given as a weighted sum of individual utilities,
W =

Pn
i=1wiui . An individual i’s contribution to society’s total

welfare is a product of her utilityui and her social weightwi 2 [0, 1]
normalized so that

Pn
i wi = 1. Utility functionsui : X ! R+ assign

positive utilities to a set of attributes or goods xi . We suppose a
utility function is everywhere continuous and di�erentiable with
respect to its inputs.

Since a planner who allocates a resource h impacts her recipi-
ents’ utilities, she solves hSW F (x;w ) := argmaxh

Pn
i=1wiu (xi ,hi )

under a budget constraint:
Pn
i=1 hi  B. Since we consider cases

of social planning in which a desirable good is being allocated, it
is natural to suppose that u is strictly monotone with respect to
h. As is common in welfare economics, we take u to be concave
in h, so that receiving the good exhibits diminishing marginal re-
turns. Further, we require that the social welfare functionalW be
symmetric:W (h; x,w ) =W (� (h);� (x),� (w )) for all possible per-
mutations of � (·). This property implies that the utility functions in
the Planner’s Problem are not individualized. In the case of binary
classi�cation, the planner decides whether to allocate the discrete
good to individual i or not (hi 2 {0, 1}).

To highlight the correspondence between the machine learning
and welfare economic approaches to social allocation, we �rst show
that we can understand loss minimizing solutions to also be welfare
maximizing ones, albeit under a particular instantiation of the social
welfare function. Since social welfare is given as the weighted
sum of individuals’ utilities, it is clear that manipulating weights

w signi�cantly alters the planner’s solution. Thus just as we can
compute optimal allocations under a �xed set of welfare weights, we
can also begin with an optimal allocation and �nd welfare weights
that would support them. In welfare economics, the form of w
corresponds to societal preferences about what constitutes a fair
distribution. For example, the commonly-called “Rawlsian” social
welfare function named after political philosopher John Rawls,
can be written as WRawls = mini ui where ui gives the utility
of individual i . This function is equivalent to the general formPn
i=1wiui where the individual i with the lowest utility ui has

welfare weightwi = 1 and all individuals k , i have weightwk =
0. On the other hand, the commonly-called “Benthamite” social
welfare function named after the founder of utilitarianism Jeremy
Bentham, aggregates social welfare such that an extra unit of utility
contributes equally to the social welfare regardless of who receives
it. Benthamite weights are equal across all individuals:wi =

1
n for

all i 2 [n].
Thus associating an optimal (possibly fairness constrained) loss

minimizing allocation with a set of welfare weights that would
make it socially optimal lends insight into how socially “fair” a
classi�cation is from a welfare economic perspective. The follow-
ing Proposition formally states this correspondence between loss
minimization and social welfare maximization.

P���������� 6.1. For any vector of classi�cations hML (xi ) that
solves a loss minimization task, there exists a set of welfare weights
w with

Pn
i=1wi = 1 such that the planner who maximizes social

welfareW with a budget B selects an optimal allocation hSW F (xi ) =
h
ML (xi ) for all i 2 [n].

P����. First, we know that sinceW (x,w ) is a weighted sum of
functions u, which are concave in h, the planner can indeed �nd
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a social welfare maximizing allocation hSW F . Let hML (x) be the
empirical loss-minimizing classi�er for {xi , zi ,�i }ni=1. With these
allocations given, we can invert the social welfare maximization
problem to �nd the weights thatw support them.

For a given utility functionu, we evaluate @u (x,h)
@h

����{xi ,hML (xi ) }
=

mi 8i 2 [n], which gives the marginal gain in utility for individual
i from having received an in�nitesimal additional allocation of h.
Notice that at a welfare maximizing allocation h, we must have that

wi
@u (x,h)
@h

����{xi ,hi } = w j
@u (x,h)
@h

����{xj ,hj } for all i, j 2 [n] (30)

When the allocation h
ML (x) has been �xed, we must have that

wimi = w jmj = k , where the constant k is set by the planner’s
budget B, for all i, j along with

Pn
i=1wi = 1. Since u is strictly

monotone with respect to h, mi > 0 for all i . We thus have a
non-degenerate system of n equations with n variables, and there
exists a unique solution of welfare weights w that support the
allocation. ⇤

Note that in the case of binary classi�cation hML (x) 2 {�1,+1, },
so allocations are not awarded at a fractional level. Thus rather
than the partial @u (x,h)

@h , the planner must consider the margin
gain of receiving a positive classi�cation. Nevertheless, Proposition
1 still holds, and the proof carries through with �u (x,h(x)) =
u (x, 1) � u (x, 0) in place of partial derivatives @u (x,h)

@h .
The equations given in (30) set an optimality condition for the

planner. Its structure, though simple, reveals that welfare weights
must be inversely proportional to an individuals’ marginal utility
gain from receiving an allocation. This result is formalized in the
Proposition below.

P���������� 6.2. For any set of optimal allocations h =
argmaxh

Pn
i=1 w̄iu (xi ,hi ) with strictly monotonic utility function u

concave in h, the supporting welfare weights have the form w̄i =
k
mi

wheremi =
@u (xi )
@h |{xi ,hi } and k > 0 is a constant set by the planner’s

budget B =
Pn
i=1 hi .

By associating a set of classi�cation outcomes with a set of im-
plied welfare weights, one can inquire about the social fairness of
the allocation scheme by investigating the distribution of welfare
weights across individuals or across groups. While there may not
be a single distribution of welfare weights that can be said to be
“most fair,” theoretical and empirical work in economics has been
conducted on the range of fair distributions of societal weights
[29, 30]. This research has considered weights as implied by current
social policies [31–33], philosophical notions of justice [34, 35], and
individuals’ preferences in surveys and experiments [30, 31, 36].
They thus o�er substantive notions of fairness currently uncap-
tured by many current algorithmic fairness approaches.

6.4.1 An Algorithm that Records All Possible Labelings.
In the previous section, we showed that for any vector of classi�ca-
tions, one can compute the implied societal welfare weights of the
generic SWF that would yield the same allocations in the Planner’s
Problem. In this section, we work in the converse direction: Begin-
ning with a planner’s social welfare maximization problem, does

ALGORITHM 2: Record all possible labelings on a dataset X by linear
separators

Input: Set X of n data points x 2 Rd
Output: All possible partitions A, B attainable via linear separators;

supporting hyperplane h
for all V ⇢ X with |V | = d do

Construct d � 1-dimensional hyperplane hV de�ned by v 2 V ;
for each point v 2 V do

P = V \ v;
h = pi�ot (hV , P, v) ; // hV pivots around the

d � 2-dimensional plane P away from v
h = translate (h, v) ; // h translates toward v
Record A = {x |x 2 h+ }, B = {x |x 2 h� }, h;

end
end

there exist a classi�er hML
2 H that generates the same classi�-

cation as the planner’s optimal allocation such that for all i 2 [n],
h
ML (xi ) = hSW F (xi )?
We answer this question for the hypothesis class of linear de-

cision boundary-based classi�ers by providing an algorithm that
accomplishes a much more general task: Given a set X, containing
n d-dimensional nondegenerate data points x 2 Rd , our algorithm
enumerates all linearly separable labelings and can output a hyper-
plane parameterized by � 2 Rd and b 2 R that achieves that set
of labels. In order to build intuition for its construction, we �rst
consider a hyperplane separation technique that applies to a very
speci�c case: a case in which a hyperplane separates sets A and B,
intersecting A at a single point and intersecting B at d � 1 points.

L���� 6.3. Consider linearly separable sets A and B of points
x 2 Rd . For any d � 1-dimensional hyperplane hV with hV \A = v
and hV \ B = P where |P | = d � 1 that separates A and B into
closed halfspaces h̄+V and h̄�V , one can construct a d � 1-dimensional
hyperplane h that separates A and B into open halfspaces h+ and h�.

Because its techniques are not of primary relevance for this Sec-
tion, we defer the full proof of this Lemma to the Appendix but
provide a brief exposition. The construction onwhich the Lemma re-
lies is a “pivot-and-translate” maneuver. A hyperplane as described
can separate points in open halfspaces by �rst pivoting (in�nitesi-
mally) on a d � 2-dimensional facet P of a convex hull C (B) away
from v 2 C (A) and then translating (in�nitesimally) back toward v
and away from C (B). We show that all separable convex sets can
be separated by such a hyperplane and procedure.

Note that since we seek enumerations of all labelings achievable
by a linear separator on a given dataset, we are not a priori given
convex hulls to separate. That is, we want to knowwhich points can
be made into distinct convex hulls and which cannot. Thus we take
the preceding procedure and invert it—the central idea is to begin
with the separators and from there, search for all possible convex
hulls: Beginning with an arbitrary d � 1-dimensional hyperplane
h de�ned by d data points, we construct convex hulls out of the
points in each halfspace created by h. Then we can use the pivot-
and-translate procedure to construct a separation of the two sets
into two open halfspaces. We must show that such a procedure is
indeed exhaustive.
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T������ 6.4. Given a dataset X consisting of n nondegenerate
points x 2 Rd , Algorithm 2 enumerates all possible labelings achiev-
able by a d � 1-dimensional hyperplane in O (ndd ) time and outputs
hyperplane parameters (� ,b) that achieve each one.

P����. We have already shown that the pivot-and-translate
construction is su�cient to linearly separate two sets A and B

in the very speci�c case given in the preceding Lemma. But we
must prove that all linearly separable sets can be constructed via
Algorithm 2. We prove it is exhaustive by contradiction.

Suppose there exists a separation of X that is not captured by
Algorithm 2. Then there exists disjoint sets A and B such that their
convex hulls C (A) and C (B) do not intersect. By the hyperplane
separating theorem, there exists a d�1-dimensional hyperplanehV1
that separates A and B, de�ned by a set V1 of d vertices v, at least
one of which is on the boundary of each convex hull. Without loss
of generality, we assume that for all x 2 A, x 2 h+V1

and for all x 2 B,
x 2 h

�

V1
. Notice that this hyperplane is indeed “checked” by the

Algorithm, and this hyperplane hV1 correctly separates x 2 X \V1
into the two sets A and B. Thus if the separation is not disclosed
via the procedure, the omission must occur due to the pivot-and-
translate procedure’s being incomplete.

In Algorithm 2, the set V1 is partitioned so that V1 = vf ,1 [ P1
where vf ,1 is the “free vertex” and P1 is the pivot set consisting
of d � 1 vertices. This partition occurs d times so that each ver-
tex v 2 V1 has its turn as the “free vertex.” Thus we can view the
pivot-and-translate procedure as constituting a second partition—a
partition of the d vertices that de�ne the initial separating hy-
perplane. By contradiction, we claim that there exists a partition
D1,E1 ⇢ V1 such that D1

`
E1 = V1 where D1 ⇢ A and E1 ⇢ B that

is unaccounted for in the d pivot-and-translate operations applied
to hV1 . Thus |D1 |, |E1 | � 2. We use a “gift-wrapping” argument, a
technique common in algorithms that construct convex hulls, to
show that the partition A and B is indeed covered by Algorithm 2.

Select v 2 D1 to be the free vertex vf ,1, and let the pivot set
P1 = V1 \ vf ,1. We pivot around P1 and away from vf ,1 so that
vf ,1 2 h+V1

. Rotations ind-dimensions are precisely de�ned as being
around d � 2-dimensional planes. Thus pivoting around the ridge
P1 away from vf ,1 is a well-de�ned rotation in Rd . Since hV1 is a
supporting hyperplane toC (B), E1 constitutes a |E1 |�1-dimensional
facet of C (B). There exists a vertex vE 2 C (B) such that E1 [ vE
gives a |E1 |-dimensional facet ofC (B). Let hV2 be de�ned by the set
V2 = P1 [ vE . hV2 continues to correctly separate all x 2 X \V2.

We once again partition V2 into sets D2 and E2 whose members
must be ultimately classi�ed in setsA and B respectively. Notice that
|D2 | = |D1 |�1, sincehV2 correctly classi�es vf ,1 as belonging to set
A. Thus with each iteration of the pivot procedure, the separating
classi�er unhinges from a vertex in C (A) and “wraps” around C (B)
just as in the gift wrapping algorithm to attach onto another vertex
inC (B). At each step, the hyperplane de�ned byd vertices continues
to support and separate C (A) and C (B). Thus process iterates until
in the |D1 | � 1-th round, the hyperplane hV |D1 |�1

has partition

D |D1 |�1 and E |D1 |�1 with
���D |D1 |�1

��� = 1. Applying the full pivot-
and-translate procedure ensures the desired separation of sets A
and B into open halfspaces.

Thus starting from a separable hyperplane de�ned by d vertices
on the convex hulls C (A) and C (B), which must exist in virtue
of the separability of sets A and B, we were able to use the pivot
procedure in order to “gift-wrap” around one convex hull until we
arrived at a d-dimensional separating hyperplane with only one
vertex vf 2 C (A). This hyperplane is obviously checked by the �rst
for-loop of Algorithm 2. The subsequent for-loop that performs
the second partition of the d vertices into the free vector vf and
the pivot set P then directly applies and performs the pivot-and-
translate procedure given in Algorithm 2 to achieve the desired
separation. ⇤

Degeneracies in the dataset can be handled by combining Algo-
rithm 2 with standard solutions to degeneracy problems in geomet-
ric algorithms, which perform slight perturbations to degenerate
data points to transform them into nondegenerate ones [37]. In
concert with these solutions, Algorithm 2 automatically reveals
which social welfare maximization solutions are attainable on a
given dataset X via hyperplane-based classi�cation and the 0 � 1
accuracy loss each entails.

6.5 Proofs
6.5.1 Proof of Proposition 3.3.

P����. For all j 2 F � , remaining in F �+�� after the perturba-
tion requires that @D

@µ j > 0 after the perturbation. Let µ�i be the
optimal µi solution at p (� ). Then following (10), we rewrite the
quantity @D

@µ j as

�j = 1 �
✓ nX

i=1
µ
�
i �i (I � Pu)xi�j (I � Pu)xj +

n��j hxj , ui
kuk2

+ b�j

◆
< 0

If dj�� > 0, then j 2 F
�+�� . Otherwise, for dj�� < 0, if �� < �j

dj
,

then @D
@µ�+��j

> 0, and j 2 F
�+�� after the perturbation. X

The same reasoning follows for j 2 E� , except we have that �j > 0.
Thus if dj�� < 0, then j 2 E

�+�� . Otherwise, for dj�� > 0, if
�� <

�j
dj
, then @D

@µ�+��j
> 0, and j 2 E

�+�� after the perturbation.

X
To ensure that margin vectors do not escape the margin, we can

directly look to r j =
@µ j
@� . Since for all j 2 M� , µ�j 2 [0,C], then

staying in the margin and setM�+�� depends on the sign of r j and
requires that

r j < 0 �!
C � µ

�
j

r j
< �� <

�µ
�
j

r j
(31)

r j > 0 �!
�µ

�
j

r j
< �� <

C � µ
�
j

r j
(32)

Thus taking the minimum of the positive quantities gives an up-
per bound, while taking the maximum of the negative quantities
gives a lower bound on �� perturbations, such that {F ,M, E}� =
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{F ,M, E}�+�� . Let

mj =

8>>>>>>>>>>><>>>>>>>>>>>:

8><>:
�j
dj
, j 2 F ,dj > 0

�1, j 2 F ,dj < 0

min{
C�µ�j
r j ,

�µ�j
r j }, j 2M8><>:

�1, j 2 E,dj > 0
�j
dj
, j 2 E,dj < 0

, Mj =

8>>>>>>>>>>><>>>>>>>>>>>:

8><>:
1, j 2 F ,dj > 0
�j
dj
, j 2 F ,dj < 0

min{
C�µ�j
r j ,

�µ�j
r j }, j 2M8><>:

�j
dj
, j 2 E,dj > 0

1, j 2 E,dj < 0

Thus all perturbations of � within the range

�� 2
⇣
max
j

mj ,min
j

Mj
⌘

satisfy the necessary conditions to ensure stable sets {F ,M, E}.
Stable classi�cations �̂i follow. ⇤

6.5.2 Proof of Corollary 3.4.

P����. For all �� in the stable region given in (16),Wi (� ) =
Wi (� +�� ) where i gives group membership z = i . Thus the groups
are welfare-wise indi�erent between classi�cations at � and �� .
For all �� < 0, where the fairness constraint is tightened,p (� ) 
p (� + �� ). Since the learner prefers lower loss, we have that p (� ) ⌫
p (� + �� ). Comparing the triples at each � value, we thus have

{p (� ),W0 (� ),W1 (� )} ⌫ {p (� + �� ),W0 (� + �� ),W1 (� + �� )}

as desired. ⇤

6.5.3 Proof of Proposition 3.8.

P����. Following much of the exposition in the main text, recall
we have that the perturbation function in (21) is given as

p (� ) � sup
µ,�
{L (µ⇤,� ⇤) � � ��� ⇤��}

which gives a global lower bound. Thus when a perturbation �� < 0
causes L (µ⇤,� ⇤)�� ��� ⇤�� to increase, then p (� +�� ) is guaranteed to
increase by at least�� ��� ⇤��. Thus when ��� ⇤�� � 0,p (�+�� )�p (� ) � 0.
The learner experience a signi�cant increase in her optimal value
p (� ) (which she wishes to minimize).

On the other hand, when�� > 0, thenL (µ⇤,� ⇤)�� ��� ⇤�� decreases.
But the decrease gives only the lower bound, and thus when ��� ⇤�� is
small, her optimal value p (� ) decreases but it is guaranteed not to
decrease by much. ⇤

6.5.4 Proof of Proposition 3.5.

P����. Fix � 2 (0, 1) and consider the stable region of �� per-
turbations given by (bL ,bU ). Suppose bL =

�j
dj

with j 2 E, then
if �j = �1, �̂j = +1. Thus at the breakpoint �� = bL , j moves
into M

�+bL and �̂j = +1 and uzj (� + bL ) < uzj (� ) where zj
gives the group membership of xj . Since no other points transition,
uz̄ (� + bL ) = uz̄ (� ) for all z̄ , zj . Since bL < 0, the fairness con-
straint is tightened and associated with a shadow price given by
� > 0 such that p (� + bL ) < p (� ). X

Suppose bL =
C�µ�j
r j and j 2 M

� with �j = +1, then j moves

into j 2 E
�+bL such that �̂j = �1. Thus uzj (� + bL ) < uzj (� ) and

uz̄ (� + bL ) = uz̄ (� ) where zj is the group membership of xj and
z̄ , zj , and p (� + bL )  p (� ). X

Suppose bU =
�j
dj
> 0 where j 2 E

� , �j = +1, and �̂j = �1.

At the breakpoint, j moves intoM�+bU such that �j = �1. Then
uzj (� + bU ) > uzj (� ) where zj is the group membership of xj . For
z̄ , zj ,uz̄ (�+bU ) = uz̄ (� ), and sincebU > 0, the fairness constraint
is loosened and p (� + bU ) > p (� ).

Suppose bU =
C�µ�j
r j > 0 where j 2 M

� and �j = �1. At the

breakpoint, j moves into E�+bU such that �̂j = +1. Then uzj (� +
bU ) > uzj (� )where zj gives the groupmembership of xj . For z̄ , zj ,
uz̄ (� + bU ) = uz̄ (� ), and since bU > 0, the fairness constraint is
loosened and p (� + bU ) � p (� ). X ⇤

6.5.5 Proof of Theorem 3.6.

P����. Theorem 3.6 follows from Lemma 3.2, Proposition 3.3,
Corollary 3.4, and Proposition 3.5. ⇤

6.5.6 Proof of Lemma 6.3 from Appendix Section 6.4.

P����. Let A and B be a pair of disjoint non-empty convex sets
that partition X ⇢ Rd : A

`
B = X. Then by the hyperplane sep-

aration theorem, there exists a pair (� ,b) such that for all x 2 A,
�|x � b—call this closed halfspace h̄+—and for all x 2 B, �|x  b—
call this closed halfspace h̄

�. One such hyperplane can be con-
structed to separate the convex hulls of A and B

C (A) =
( |A |X
i=1

�ixi |xi 2 A,�i � 0,
|A |X

i=1
�i = 1

)

C (B) =
( |B |X
i=1

�ixi |xi 2 B,�i � 0,
|B |X

i=1
�i = 1

)

Let hV be the d � 1-dimensional hyperplane de�ned by the set
V with |V | = d such that V \ C (A) , ; and V \ C (B) , ;. In
order for the hyperplane to separate C (A) and C (B), hV must also
support each hull—we know that such a hyperplane always exists.
In order to separate C (A) and C (B) so they are contained within
open halfspaces h+V and h�V , we wiggle the hyperplane so that it
no longer passes through vertices v 2 V but still maintains convex
hull separation. This “wiggle” step is the �nal step of separating A
and B.

SupposeV can be partitioned into a single vertex vA inC (A) and
a set P = {v|v 2 C (B)} with |P | = d � 1. The set P de�nes a ridge
onC (B), since it is a d � 2-dimensional facet ofC (B). Rotations in d-
dimensions are precisely de�ned as being around d �2-dimensional
planes. Thus pivoting hV around the ridge P away from vA is a
well-de�ned rotation in Rd . Selecting any in�nitesimally small
rotation angle � will be enough to have C (A) 2 h

+
V . After the

pivot, we translate hV away from the ridge P back toward vA.
An in�nitesimal translation is su�cient, since we simply wish to
dislodge hV from the ridge P , so that C (B) 2 h�V . ⇤
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