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Abstract

We consider a monopoly information holder selling informa-

tion to a budget-constrained decision maker, who may ben-

efit from the seller’s information. The decision maker has a

utility function that depends on his action and an uncertain

state of the world. The seller and the buyer each observe a

private signal regarding the state of the world, which may

be correlated with each other. The seller’s goal is to sell her

private information to the buyer and extract maximum pos-

sible revenue, subject to the buyer’s budget constraints. We

consider three different settings with increasing generality,

i.e., the seller’s signal and the buyer’s signal can be indepen-

dent, correlated, or follow a general distribution accessed

through a black-box sampling oracle. For each setting, we

design information selling mechanisms which are both opti-

mal and simple in the sense that they can be naturally inter-

preted, have succinct representations, and can be efficiently

computed. Notably, though the optimal mechanism exhibits

slightly increasing complexity as the setting becomes more

general, all our mechanisms share the same format of acting

as a consultant who recommends the best action to the buyer

but uses different and carefully designed payment rules for

different settings. Each of our optimal mechanisms can be

easily computed by solving a single polynomial-size linear

program. This significantly simplifies exponential-size LPs

solved by the Ellipsoid method in the previous work, which

computes the optimal mechanisms in the same setting but

without budget limit. Such simplification is enabled by our

new characterizations of the optimal mechanism in the (more

realistic) budget-constrained setting.

1 Introduction

Recent years have seen a growth of information mar-
kets thanks to the tremendous increase in the volume
and variety of the online data sources. The informa-
tion traded includes consumer information (e.g. Acx-
iom, Nielsen, Oracle), credit reports (e.g. Experian,
TransUnion, FICO), recommendations (e.g. Waze, Tri-
padvisor), etc., which can be valuable to decision makers
like advertisers, retailers and loan providers.

∗Supported by the National Science Foundation under Grant

No. CCF-1718549.

Motivated by these applications, this paper consid-
ers a very basic setting along this line and studies how a
monopoly information provider can sell information op-
timally to a single decision maker. The decision maker’s
utility depends on the action he takes (e.g. to lend the
money or not) and a random state of the world, which
is uncertain to the decision maker (e.g., whether the
borrower will pay the debt). The information provider
and the decision maker each observe a private signal
regarding the state of the world. Their signals can be
correlated to one another. The information provider’s
goal is to sell her private signal to the decision maker
in a way that maximizes the revenue, knowing that the
buyer will choose what is best for himself.

This problem has been formulated and studied
by Babaioff et al. (2012). They identified conditions un-
der which there is an optimal one-round mechanism and
provide characterizations of the optimal mechanism. In
particular, they show that a one-round optimal mecha-
nism exists in two special settings: (1) the seller’s sig-
nal and the buyer’s signal are independent, or (2) the
buyer is committed to complete the entire protocol even
if aborting the protocol will give him higher utility. The
buyer commitment assumption is not as unrealistic as it
might first sound. In particular, Babaioff et al. (2012)
show that buyer commitment can be obtained using the
following approach: first ask the buyer to deposit a large
amount of money, then run the optimal mechanism for
committed buyers, and at last refund the buyer his de-
posit less the payment in the mechanism. The deposit
step enforces the buyer’s commitment to the payment of
the mechanism.1 However, the major drawback of this
approach — as also highlighted by Babaioff et al. (2012)
— is that both the amount of deposit and the money
transfer required by the mechanism can be extremely
large compared to players’ expected utilities. For in-

1This is crucial in selling information since the payment

amount itself can be correlated with the information for sale.

Thus the buyer can learn information upon knowing the payment
amount but before deciding to purchase. In such cases, an

uncommitted buyer can simply learn the payment amount and

then leave because the payment already reveals useful information
to him.
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stance, they give a simple example with buyer utility
function taking values from [0, 5]. However, the optimal
mechanism has to ask the buyer to deposit an amount
of 25004 and then either returns 0 or returns 50000 to
the buyer, yielding an optimal expected seller revenue
no more than 2. Clearly, such a mechanism would not
be practical in reality.

Given the above deficiencies, this work considers a
more realistic setting with a budget-constrained buyer.
In particular, the buyer in our model has a budget, indi-
cating the maximum amount he can afford. We consider
both public budget which is known to the seller a priori,
and private budget which the seller also needs to elicit in
the mechanism. In the latter case, the buyer may mis-
report his private budget if this is beneficial to him. We
assume that the seller also has a budget as the maximum
amount she can afford to pay the buyer (as seen from the
previous example, the optimal mechanism sometimes re-
quires the seller to pay the buyer). We consider three
settings with increasing generality — i.e., independent
signals, correlated signals, and signals drawn from a gen-
eral distribution accessed through a black-box sampling
oracle — and for each setting we are able to design in-
formation selling mechanisms which are both optimal
(approximately optimal when signal distributions are
accessed through samples) and simple in the sense that
they can be naturally interpreted, have succinct repre-
sentations, and can be efficiently computed. Notably, in
contrast to the optimal mechanisms by Babaioff et al.
(2012) which are formulated as exponential-size linear
programs and solved by using the ellipsoid method on
the dual LP, all our mechanisms can be directly com-
puted by solving a single polynomial-size linear program
thanks to our new and succinct characterization of the
optimal mechanisms. In some sense, our results can
be viewed as generalizations of the results by Babaioff
et al. (2012) since when the payments in their mecha-
nisms are smaller than the budget limits, our mecha-
nisms (though simpler) also achieve optimality as their
mechanisms whereas when the payments in their mech-
anisms are too large, our mechanisms are more realistic
by imposing payment limits. Next, we elaborate our
results in more details.

1.1 Our Results When the seller’s signal and the
buyer’s signal are independent and the buyer’s budget
is public, we prove that the optimal mechanism has
the following simple format: (i) it asks the buyer to
report his signal; (ii) based on the report, the seller
charges the buyer a fixed amount of payment; (iii) the
seller maps (possibly randomly) her signal to an action
recommendation to the buyer. The mechanism has
the following properties: (1) it is individually rational

(IR) and incentive compatible (IC); (2) each action
recommended to the buyer is indeed his best response,
which we call the obedience constraint; (3) the optimal
mechanism can be computed directly from solving a
polynomial-size linear program (LP). This mechanism
is very much like the process of consulting, during which
a client (the buyer) tells his type to the consultant
(the seller) and pays the consultant for receiving the
best action recommendation. As a result, we term
this mechanism the consulting mechanism with direct
payment (CM-dirP).

When the buyer budget is private, we show via an
example that any mechanism with a single-round trans-
fer cannot be optimal even when the buyer’s signal
and the seller’s signal are independent. Nevertheless,
for independent signals, we prove that the consulting
mechanism with a slightly different payment method,
coined the consulting mechanism with deposit and re-
turn (CM-depR), achieves the optimal revenue. In par-
ticular, instead of asking for a direct payment as in
CM-dirP, the CM-depR mechanism first asks the buyer to
deposit his (private) budget and then refund the buyer
his budget less the payment (thus two-rounds of trans-
fers). Besides satisfying IR, IC and obedience, the op-
timal CM-depR mechanism can also be computed by a
polynomial-size LP.

For the general setting with correlated signals
drawn from an explicitly given prior distribution, we
prove that for both public and private budget cases, the
consulting mechanism with a simple two-round transfer
process, coined the consulting mechanism with proba-
bilistic return (CM-probR), achieves the optimal revenue.
The CM-probR has the following format: (i) it asks the
buyer to report his signal and deposit his budget; (ii)
based on the report, the mechanism maps the seller sig-
nal (randomly) to an action recommendation together
with an amount of refund, which is either 0 (i.e., no
refund) or the buyer’s full deposit plus the seller’s full
budget. The main difference between CM-probR and the
previous consulting mechanisms is that the payment
amount is no longer pre-determined before any infor-
mation disclosure, but is contingent upon the recom-
mended action and thus contains information regarding
the seller’s private signal. Similarly, besides satisfying
IR, IC and obedience, the optimal CM-probR mecha-
nism can also be computed by a polynomial-size LP.
Our proof of the optimality and the computability of
CM-probR mechanisms features a novel use of the dual-
ity theory, which may be of independent interest. Our
starting point is an LP formulation P for computing
the optimal mechanism which however has exponen-
tially many constraints and exponentially many vari-
ables. We simplify this LP as follows. We first turn
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to the dual LP D and leverage its special structure to
eliminate a majority of the dual variables and convert
D into another linear program D′ with only polyno-
mially many variables though still exponentially many
constraints. At this point, we can employ the celebrated
ellipsoid method to solve D′, which however is neither
practically efficient nor able to give us an interpretable
mechanism. We instead turn to the dual of D′, denoted
as P ′, which is different from P. Interestingly, despite
that P ′ has exponentially many variables, we manage
to prove that its solutions correspond to a special class
of information selling mechanisms and moreover, always
admits an optimal solution which is a CM-probR. This
yields the optimality of CM-probR mechanisms.

Finally, we extend our results to the setting where
the seller does not know the prior distribution of the
signals explicitly and can only access it through a black-
box sampling oracle. This applies to the cases where
distributions are only accessible through samples. Using
a Monte-Carlo sampling approach, inspired by the idea
of Dughmi and Xu (2016), we show that a mechanism
with approximate optimality, IR, IC and obedience can
be implemented in polynomial time with polynomially
many samples from the prior distribution.

1.2 Related Work Most relevant to this paper is
the work by Babaioff et al. (2012) who study the
optimal mechanism design for selling information to
an imperfectly informed decision maker (henceforth the
buyer) without budget consideration. Our setting is
essentially the same as that of Babaioff et al. (2012),
but under budget constraints. This is motivated by
the drawbacks of their optimal mechanisms which may
require an extremely large amount of transfers even to
extract a tiny amount of revenue. On the descriptive
side, we show that budget constraints indeed affect the
characterization of optimal mechanisms. For example,
when the buyer has a private budget constraint, any
mechanism with one-round transfer cannot be optimal
even when signals are independent, which is opposed
to the characterization in Babaioff et al. (2012) for the
same setting but without budgets. On the prescriptive
side, all the mechanisms in Babaioff et al. (2012) rely
on solving exponentially large linear programs via the
ellipsoid method whereas all our mechanisms can be
computed by directly solving a polynomial-size linear
program. This is enabled by our new characterizations
of the optimal mechanism in much simpler and more
interpretable forms.

The sale of information has attracted much atten-
tion in the economic literature. To our knowledge, Ad-
mati and Pfleiderer (1986, 1990) are among the first
to explicitly consider the sale of information. They con-

sider a monopoly who sells information regarding a risky
asset to a continuum of homogeneous traders in a finan-
cial market, which then affects the equilibrium price of
the market. They show that the optimal selling method
may involve revealing different and noisy signals to dif-
ferent traders. In contrast to the focus of Admati and
Pfleiderer (1986, 1990) on selling information to mul-
tiple homogeneous traders with externalities, we study
the sale of information to a single decision maker with
heterogeneous types. Recently, Bergemann and Bonatti
(2015) study the sale of cookies, a particular type of in-
formational goods, motivated by the context of online
advertising. Malenko and Malenko (2018) studies how
to sell information to voters and characterize when the
sale of information leads to a more informative voting
outcome. Bergemann et al. (2018) considers the sale of
information to a decision maker, which is similar to our
setting but without budget constraints. Moreover, they
restrict the design space to a particular format of mecha-
nisms as a menu of statistical experiments. They estab-
lish various properties regarding the optimal mechanism
and characterize the optimal mechanism in the cases of
binary states and actions, or binary types. In partic-
ular, part of our proof for the characterization results
of independent signals uses similar ideas by Bergemann
et al. (2018) to reduce the number of signals required in
the signaling scheme. Eso and Szentes (2007) studied
the consultant’s problem of optimally contracting with
the client. They considered a different model in which a
consultant incurs a cost to acquire a private observation,
and once the observation is acquired, the consultant will
fully reveal the information to the client.

Selling physical goods to buyers with budget con-
straints has been studied extensively in the literature
of mechanism design (see, e.g., (Che and Gale, 2000;
Chawla et al., 2011; Devanur and Weinberg, 2017) and
references therein). Our work is conceptually related
to, yet fundamentally different from, selling physical
goods and meanwhile revealing information regarding
the value of the item for sale. Emek et al. (2012);
Bro Miltersen and Sheffet (2012); Badanidiyuru et al.
(2018) study how an auctioneer can strategically reveal
information to bidders in order to affect their valuation
regarding the item with the ultimate goal of maximiz-
ing revenue in a fixed auction format (in particular, the
second-price auction). Daskalakis et al. (2016) consider
a seller of a physical item who also possesses private
information regarding the item’s value to buyers, and
studies the optimal mechanism for jointly selling the
item and the seller’s private information. They show
that this joint design reduces to optimal mechanism
design for selling multiple items without information
involved. Smolin (2019) considers a similar situation
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where a seller sells an item, characterized by a vector of
attributes, to a buyer. They also study the optimal joint
design of the item pricing mechanism and information
selling mechanism and provide a characterization of the
optimal mechanism within a particular design space.

Finally, our work is also related to the rich literature
of persuasion, a.k.a. signaling or information design.
Our model is particularly relevant to persuasion of a
privately informed receiver by Kolotilin et al. (2017)
since the seller in our model reveals information by a
signaling scheme to a buyer with a private signal. The
techniques we use in Section 5 is inspired by algorithms
for Bayesian persuasion designed by Dughmi and Xu
(2016). Due to the space limit, we do not give a
thorough review of the large literature in persuasion but
refer the reader to the recent survey by Kamenica (2018)
(from the economic perspective) and Dughmi (2017)
(from the algorithmic perspective).

2 Preliminaries

Basic Setup We consider a monopoly information
holder (call her the seller) selling information to a
budget-constrained decision maker (call him the buyer),
who needs to choose an action a ∈ A and has a budget
b ∈ B. The buyer’s utility depends on both his action
a and a random state of the world. The seller and the
buyer each observe a private signal about the state of
the world, denoted by ω ∈ Ω and θ ∈ Θ, respectively.
Sets A,B,Ω,Θ are all finite. Let u(ω, θ, a) denote the
buyer’s utility of action a when the seller’s signal and
buyer’s signal are realized to ω, θ, respectively.2 For
convenience, we sometimes also call ω and θ the type
of the seller and buyer. Moreover, we assume that
the seller also has a budget M to run the mechanism
and M is publicly known (as we shall see, the optimal
mechanism sometimes requires the seller to pay the
buyer with some probability).

We assume that the signal pair ω, θ and the budget
b are drawn from a publicly known prior distribution
µ(ω, θ, b) and the utility function u(ω, θ, a) is also public
knowledge. The surplus for a buyer of type θ from fully
observing the seller’s signal ω, denoted as δ(θ), is

δ(θ) = Eω
[
max
a

u(ω, θ, a)
∣∣θ]−max

a∈A
Eω [u(ω, θ, a)|θ] ≥ 0.

The seller’s goal is to sell her information regarding
ω to the budget-constrained buyer to extract the largest
possible revenue. As is typical in mechanism design, we
assume that the seller is a trusted authority and will

2Alternatively and equivalently, one can think of the buyer’s

utility as a function u′ of action a and the state of world denoted

as by s. Then our definition of u(ω, θ, a) simply corresponds to
Es[u′(s, a)|ω, θ].

not defect after posting a selling mechanism based on
her knowledge of µ(ω, θ, b) and u(ω, θ, a). However, the
buyer will strategically respond to the mechanism in
order to maximize his own utility and may defect if that
is beneficial. We remark that this basic model has been
studied in some previous works Babaioff et al. (2012);
Bergemann et al. (2018). The key difference between
our model and previous ones is that our seller and buyer
are both budget-constrained.

The Design Space – Generic Interactive Pro-
tocols. We now describe the design space, i.e., the class
of mechanisms within which our mechanism will be opti-
mal. A key observation by Babaioff et al. (2012) is that
a mechanism that interacts with the buyer for multiple
rounds can possibly extract more revenue than any one-
round mechanism. Therefore, we consider mechanisms
that may interact with the buyer for multiple rounds
via a generic interactive protocol, as defined by Babaioff
et al. (2012). At a high level, the protocol/mechanism
can be viewed as an extensive-form game represented
as a tree with three types of nodes: seller nodes, buyer
nodes and transfer node. Each move at a seller node
can be seen as revealing some amount of information
regarding ω to the buyer whereas each move at a buyer
node reveals buyer information (e.g., the buyer’s type)
to the seller. All the payments — from the buyer to the
seller or vice versa — happen at transfer nodes. More
formally, the protocol is defined as follows.

Definition 2.1. (Babaioff et al. (2012)) A
generic interactive protocol is a finite-size protocol tree
with the following three types of non-leaf nodes:

1. Seller node: at a seller node n, the seller ran-
domly moves to one of the children of n accord-
ing to her private signal ω. Let C(n) be any child
of n and pn(ω,C(n)) be the probability of moving
to C(n) when the seller’s signal is ω. Note that∑
C(n) pn(ω,C(n)) = 1 for all ω.

2. Buyer node: at a buyer node n, the buyer (with
type θ and budget b) randomly moves to one of the
children C(n). A buyer’s strategy at node n is a
transition function φn((θ, b), C(n)), which indicates
the probability of moving to the node C(n). Natu-
rally, it should satisfy

∑
C(n) φn((θ, b), C(n)) = 1.

3. Transfer node: any transfer node n only has
one child and an associated payment to the seller
of amount t(n). Note that t(n) can be negative,
meaning the seller pays the buyer.

The whole protocol (including all the transition
probabilities) is publicly known and both players know
which node they are currently at during the execution.
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However, each player’s private type is only known to
themselves. Nevertheless, the buyer at any buyer node
can form a posterior belief on ω according to what
has been observed so far along the tree path based
on the transition function pn(ω,C(n)) at each seller
node. During the game, the buyer can choose to leave
the protocol if that is beneficial or the total spending
exceeds his budget. Otherwise, the game terminates
at some leaf node of the protocol. In either case, the
buyer will then choose the best action based on his
posterior belief of ω. Furthermore, the seller’s budget
constraint restricts the net transfer from seller to buyer
to never exceeds M at any node of the protocol tree,
and the buyer will never choose to visit a node of the
protocol tree at which the net transfer from buyer to
seller exceeds b.

We remark that all the optimality claims through-
out the paper will be within the design space of all
generic interactive protocols, though we tend to omit
this emphasis for convenience. We first simplify the de-
sign space by invoking the revelation principle.

Lemma 2.1. (Revelation principle) There exists
an optimal generic interactive protocol in which the
buyer truthfully reports type θ and budget b at the
beginning and takes no other actions. Therefore, the
protocol only has one buyer node, i.e., the root of the
protocol tree. We call such a mechanism a revelation
mechanism.

The proof can be found in Appendix A. A revelation
mechanism is incentive compatible (IC) if it is an
optimal strategy for the buyer to report his true type
θ and budget b at the beginning, and is individually
rational (IR) if the expected utility of participating the
mechanism is non-negative for any buyer.

Information Revelation via Signaling
Schemes. Though the generic interactive proto-
cols reveal information sequentially in general and can
be intricate, we prove that optimal mechanisms will
only need to reveal information once (though transfers
may happen at multiple rounds)3, and such information
revelation can be described via a signaling scheme.
Concretely, a signaling scheme is a randomized mapping
from the seller’s signal set Ω to a set of signals Σ,
which can be fully described by the likelihood function
{p(ω, σ)}ω∈Ω,σ∈Σ where p(ω, σ) is the probability of
sending signal σ given seller signal ω.

With slight abuse of notation, we use µ(ω) to denote
the buyer’s belief regarding the seller’s signal ω. After

3 If one imposes a no-positive-transfers constraint, that t(n)

cannot be negative at any transfer node, then Babaioff et al.

(2012) present an example where the seller may need to reveal
information more than once in the optimal mechanism.

receiving any signal σ from the signaling scheme, the
buyer with prior belief µ will update his belief via a
standard Bayesian update, and infer that the buyer
signal is ω with probability

(2.1) Pr(ω|σ) =
µ(ω)p(ω, σ)∑

ω′∈Ω µ(ω′)p(ω′, σ)
.

As an example, each buyer node n in the generic
interactive protocol, together with its transitions de-
scribed by {pn(ω,C(n))}ω,C(n), is equivalent to a sig-
naling scheme in which each C(n) corresponds to a sig-
nal and pn(ω,C(n)) is the probability of sending signal
C(n) given the seller type ω. Under this interpretation,
moving to node C(n) is equivalent to that the seller
sends a signal. The buyer then observes the signal and
updates his belief regarding ω according to Equation
(2.1). Though such information revelation and buyer’s
belief updates may happen multiple times in the generic
interactive protocol, we will show that it suffice to reveal
information only once in the optimal mechanism.

Player Utilities and the Revenue Maximiza-
tion Problem. Let Zθ,b denote the (random) node
that the protocol ends at (so Zθ,b could be a leaf, or
a node where the buyer choose to leave) when interact-
ing with a buyer of type θ and budget b. Let µ(ω|Zθ,b)
denote the buyer’s posterior belief probability of ω at
Zθ,b and t(Zθ,b) be the summed transfer on the path
from the root to Zθ,b. The expected utility of a buyer
of type θ and budget b is then equal to

U(θ, b) = EZθ,b

[
max
a

∑
ω∈Ω

[u(ω, θ, a) · µ(ω|Zθ,b)− t(Zθ,b)

]
,

where the randomness of node Zθ,b is due to the internal
randomness of the mechanism. Note that the buyer
can always leave at the beginning, with expected utility
maxa

∑
ω∈Ω u(ω, θ, a) · µ(ω|θ, b).

On the other hand, the seller’s revenue of a generic
interactive protocol M is

Rev(M) =
∑
θ,b

µ(θ, b) · EZθ,b [t(Zθ,b)] ,

where µ(θ, b) =
∑
ω µ(ω, θ, b) is the prior probability of

a buyer of type θ and budget b showing up. The seller’s
goal is to choose the optimal protocol M that maximizes
the above expected revenue, assuming a rational buyer
who will optimize his own utility in this mechanism.

3 Independent Signals

An interesting special case of the problem is that the
buyer’s signal and budget (θ, b) is independent from the
seller signal ω, i.e., µ(ω, θ, b) = µ(ω) · µ(θ, b) where µ(·)
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denotes the prior distribution of the corresponding ran-
dom variables. We study this special case separately
due to two reasons. First, this setting has another
natural interpretation — i.e., the θ can also be inter-
preted as the buyer’s private type that captures the
buyer’s information-irrelevant characteristics (thus in-
dependent of the seller’s signal) such as, e.g., properties
of his decision problem u. Second, the optimal mech-
anism of this case has a more concise representation.
In particular, we prove that in this case, there exists
an optimal budget-feasible mechanism with the follow-
ing simple procedure: (1) it asks for the buyer’s type
θ and budget b; (2) charges the buyer a fixed amount
(via direct payment or first ask for a deposit of b and
then return a part of it); (3) recommend an action for
the buyer to take. This mechanism is similar in spirit
to a “consulting procedure” during which the buyer (a
client) tells his type to the seller (the consultant). The
seller then charges the buyer a fixed amount of money
and recommends an action to the buyer to take based
on his reported type. We thus call such mechanisms
consulting mechanisms. It turns out that, with inde-
pendent signals, the optimal mechanism needs to use
slightly different payment methods for the public and
private budget cases. We thus consider them separately
in subsection 3.1 and 3.2.

3.1 Public Budget In this subsection, we prove that
when the signals are independent and the buyer has a
fixed public budget b, there always exists an optimal
consulting mechanism with one-round direct payment
from the buyer to the seller, formally defined as follows.

Definition 3.1. A consulting mechanism with direct
payment (CM-dirP) for a buyer with publicly known
budget b proceeds as follows:

1. The seller commits to a payment amount tθ(≤ b)
and an action recommendation policy described as a
mapping pθ : Ω→ ∆A for each buyer type θ, where
pθ(ω) ∈ ∆A with pθ(ω, a) denoting the probability
of recommending action a given seller signal ω.
pθ is required to be obedient — i.e., conditioned
on any recommended action, it must indeed be an
optimal action for the buyer given his information.

2. The seller asks the buyer to report his type θ̂.

3. The seller charges the buyer an amount tθ̂.

4. Based on her signal ω, the seller samples an action
a ∼ pθ̂(ω) and recommends a to the buyer.

We make a few remarks about CM-dirP. First, CM-dirP
is indeed a generic interactive protocol, described as
follows: (1) its root is the only buyer node at which he

reports his type θ̂; (2) each child of the root corresponds

to a buyer type θ̂ and is a transfer node with transfer
amount tθ̂ (to the seller); (3) following each transfer
node is a seller node whose children are leaves, each
indexed by a buyer action a ∈ A, and the transition
probability to leaf node a ∈ A is pθ̂(ω, a). Second,
as described in Section 2, the transition from seller
node to leaves is effectively a signaling scheme, in which
the set of signals coincides with the set of actions.
Upon receiving an action recommendation a, the buyer
infers a posterior probability of ω by Bayes updates,

as follows: Pr(ω|a) = µ(ω)p(ω,a)∑
ω′∈Ω µ(ω′)p(ω′,a) . Finally, an

intrinsic constraint of CM-dirP is that the seller’s action
recommendation must satisfy the obedience constraint.
That is, the recommended action must indeed be an
optimal action for the buyer’s reported type or, more
formally,

a = argmax
a′∈A

∑
ω

u(ω, θ̂, a′) ·
µ(ω)pθ̂(ω, a)∑

ω′∈Ω µ(ω′)pθ̂(ω
′, a)

.

Our main result of this subsection is to prove the
optimality of CM-dirP mechanisms, described as follows.
The proof of Theorem 3.1 is deferred to Appendix B.1.

Theorem 3.1. When the buyer budget b is public and
the buyer signal θ is independent from ω, there always
exists an optimal mechanism that is an IC consulting
mechanism with direct payment (CM-dirP).

3.2 Private Budget When the budget is privy to
the buyer, our mechanism will also need to ask the
buyer to report his budget. It turns out that in this
case, any mechanism with single-round transfer cannot
achieve optimality, which is illustrated as follows.

Example 3.1. We consider a similar setup as
the“treasure box” example used by Babaioff et al.
(2012). In particular, imagine a box with a locker on
it. There are two keys labeled with 0 and 1, exactly one
of which can open the box. The buyer can choose one
key and try it. If he opens the box, he gets the object
inside. Let the type of the buyer θ ∈ {0, 1} encode his
value zθ for the object, where z0 = 120 and z1 = 80.
The seller knows exactly what the correct key is, and
let it be ω ∈ {0, 1}. How should the seller sell her
information to the buyer?

In this problem, we have Ω = Θ = A = {0, 1},
u(ω, θ, a) = 1{ω = a} · zθ. A type-0 buyer has a
budget of 50 whereas a type-1 buyer has a budget of
100. The signals θ and ω are independent and uniformly
at random. Concretely, the prior distribution can be
expressed as follows: µ(ω, θ, b) = 1/4 when (ω, θ, b) =
(0, 0, 50), (1, 0, 50), (0, 1, 100), (1, 1, 100) and µ(ω, θ, b) =
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0 otherwise. Simple calculation shows that the buyer’s
surplus from fully knowing the seller’s signal ω will be
δ(0) = 60 and δ(1) = 40.

It can be shown that some CM-dirP mechanism
achieves optimality among all mechanisms with a
single-round of transfer. Moreover, the optimal CM-dirP
mechanism is to charge a fixed price 40 and then reveal
the exact value of ω, which achieves expected revenue
40.4 However, strictly more revenue can be extracted
via the following mechanism with two rounds of trans-
fers. Consider the mechanism that offers the buyer the
following two options:

1. Pay 50 dollars to know the exact value of ω.

2. Pay 100 dollars first and then get a refund of 61
dollars together with the exact value of ω.

The type-0 buyer only has 50 dollars, so he can only
choose Option 1. The type-1 buyer will choose Option
2. The expected revenue of this mechanism is thus
(50 + 39)/2 = 44.5, which is higher than 40.

We show that consulting mechanisms can still
achieve optimality but with a slightly different payment
method: first ask the buyer to fully deposit his budget,
and then return a part of the deposit back.

Definition 3.2. A consulting mechanism with deposit
and return (CM-depR) proceeds as follows: (1) The seller
commits to a payment amount tθ,b(≤ b) and an action
recommend policy pθ,b : Ω → ∆A for each (θ, b), under
obedience constraints (similar to Step 1 of the CM-dirP

mechanism); (2) Asks the buyer to report his type θ̂

and deposit his budget b̂; (3) Returns to the buyer an

amount of b̂ − tθ̂,̂b; (4) Samples an action a ∼ pθ̂,̂b(ω)
and recommends a to the buyer.

As can be seen, a CM-depR mechanism is almost
the same as CM-dirP except that it charges the buyer
tθ̂,̂b by first asking him to deposit the budget b̂ and then

immediately returning b̂−tθ̂,̂b whereas CM-dirP just asks
for a direct payment tθ̂. This step is useful in the private
budget case because it serves as a “verification” of the
buyer’s budget which helps the seller to learn more
information about the buyer’s type and thus increases
her power of price discrimination. This intuition is also
illustrated in Example 3.1.

Theorem 3.2. When the buyer has a private budget
and (θ, b) is independent from ω, there always exists an
optimal mechanism that is an IC consulting mechanism
with deposit and return (CM-depR).

The proof can be found in Appendix B.2.

4in Section 3.3, we will show how to compute the optimal
CM-dirP mechanism via a polynomial-size linear program.

3.3 Computing Optimal Consulting Mecha-
nisms We now show how to efficiently compute the
optimal consulting mechanisms for both public and pri-
vate buyer budget. It turns out that in both cases,
the optimal consulting mechanisms can be easily com-
puted by simple linear programs with polynomial size.
This much simplifies the optimal mechanism proposed
by Babaioff et al. (2012) (for the setting without budget
constraints), which requires solving exponentially-large
linear programs by going through the dual program and
the ellipsoid method. Our mechanism is simpler, more
interpretable and can be more efficiently computed from
a practical perspective.

Here, we only give the LP formulation for comput-
ing the optimal CM-depR mechanism since the formula-
tion for the optimal CM-dirP is essentially the same. By
definition, a CM-depR mechanism can be fully described
by variables pθ,b(ω, a), which is the probability of recom-
mending action a when the seller signal is realized to ω
and the buyer reports (θ, b), and the corresponding net
transfer variable tθ,b. If a (θ, b)-buyer misreports type θ′

and budget b′, he will receive a recommendation gener-
ated according to the random mapping pθ′,b′(ω, a) from
the seller. However, this recommended action does not
have to be optimal for this buyer due to his misreport.
Nevertheless, the buyer’s optimal expected utility can
still be computed as the sum of the optimal expected
utilities from all action recommendations:∑

a

max
a′

∑
ω

µ(ω)pθ′,b′(ω, a)u(ω, θ, a′)− tθ′,b′ .

As a result, the optimal consulting mechanism can
be computed via a linear program (LP) as in Figure 1
with variables pθ,b(ω, a) and tθ,b.

The first constraint guarantees the obedience con-
strain in the consulting recommendation, i.e., each rec-
ommended action must indeed be an optimal action for
the buyer’s reported type. The second constraint guar-
antees incentive compatibility (IC) and the third con-
straint guarantees individual rationality (IR).

We remark that the IC constraints above are not
linear (yet). However, one can easily transform them
into linear constraints by introducing new variables
zθ,θ′,b′,a to represent the max function, as follows

zθ,θ′,b′,a = max
a′

∑
ω

µ(ω) · pθ′,b′(ω, a) · u(ω, θ, a′).

Then for any θ, θ′, b ≥ b′, the IC constraint can be re-
formulated as follows:∑

ω,a

µ(ω) · pθ,b(ω, a) · u(ω, θ, a)− tθ,b

≥
∑
a

zθ,θ′,b′,a − tθ′,b′
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max
∑
θ,b µ(θ, b) · tθ,b

s.t.
∑
ω µ(ω)pθ,b(ω, a)u(ω, θ, a) ≥

∑
ω µ(ω)pθ,b(ω, a)u(ω, θ, a′), for a, a′, θ, b (OB)∑

ω,a µ(ω)pθ,b(ω, a)u(ω, θ, a)− tθ,b
≥
∑
a maxa′

∑
ω µ(ω)pθ′,b′(ω, a)u(ω, θ, a′)− tθ′,b′ , for θ, θ′, b, b′ (IC)∑

ω,a µ(ω)pθ,b(ω, a)u(ω, θ, a)− tθ,b ≥
∑
ω µ(ω)u(ω, θ, a′), for (θ, b), a′ (IR)

tθ,b ≤ b, for (θ, b) (budget)∑
a pθ,b(ω, a) = 1, for (θ, b), ω

0 ≤ pθ,b(ω, a) ≤ 1

Figure 1: LP formulation that computes the optimal consulting mechanisms.

with additional constraints that define zθ,θ′,b′,a:

zθ,θ′,b′,a ≥
∑
ω

µ(ω) · pθ′,b′(ω, a) · u(ω, θ, a′), ∀a′ ∈ A.

These overall establish the following theorem.

Theorem 3.3. The optimal CM-dirP mechanism for
public buyer budget and the optimal CM-depR mechanism
for private buyer budget can each be computed by a
single linear program of poly(|Θ|, |A|, |Ω|) size.

4 Correlated Signals

In this section, we turn to the general setting with
correlated signals. In this case, buyers of different
signal θ’s will have different prior beliefs on ω due to
the correlation between ω and θ. On one hand, this
increases the seller’s power to do price discrimination.
On the other hand, it also complicates the design of the
optimal mechanism. In particular, with independent
signals, the payments of the optimal mechanisms only
depend on buyer types but do not need to be contingent
on the information revealed (recall that CM-dirP and
CM-depR ask for payments before any information is
revealed). However, Babaioff et al. (2012) show that this
ceases to hold for correlated signals, even when there is
no budget constraint. That is, when the seller’s signal
and the buyer’s signal are correlated, the payment of the
optimal mechanism has to depend on the information
that is revealed to the seller.

In this section, we prove that the consulting mecha-
nism coupled with a particular way of payments (which
does depend on the information revealed) — together
termed the Consulting Mechanisms with Probabilistic
Return (CM-probR) — is optimal for both the pub-
lic and private buyer budget. With this characteri-
zation result, we then show that the optimal mecha-
nism can be computed efficiently, again by formulating
a polynomial-size linear program to directly solve for
the optimal CM-probR mechanism.

4.1 Optimality of CM-probR for Correlated Sig-
nals We start by formally defining the Consulting

Mechanisms with Probabilistic Return (CM-probR), as
follows

Definition 4.1. Let [I] = {+,−} contain the indica-
tors about whether the buyer will receive a return (“+”)
or not (“−”). A consulting mechanism with probabilis-
tic return (CM-probR) for a budget-constrained buyer
proceeds as follows:

1. The seller commits to an action recommendation
policy described as a mapping pθ,b : Ω→ ∆(A× I)
for each (θ, b), where pθ,b(ω) ∈ ∆(A × I) with
pθ,b(ω, [a, i]) denoting the probability of recommend-
ing action a with indicator i ∈ {+,−} given seller
signal ω. pθ,b is required to be obedient — i.e.,
conditioned on any recommended action, it must
indeed be the buyer’s optimal action given his in-
formation.

2. The seller asks the buyer to report his type θ̂ and
deposit his budget b̂.

3. Based on her signal ω, the seller samples [a, i] ∼
pθ̂,̂b(ω), and recommends a to the buyer.

4. If the sampled i = “−”, return b̂+M to the buyer;
return 0 otherwise (recall M is the seller’s budget).

The key difference between CM-probR and CM-dirP

is in their ways of payments. In CM-probR, the seller has

some probability of receiving a return of b̂+M and this
probability depends on the [a, i] pair. One might wonder
why we treat the two cases + and − (w.r.t. an action a)
separately while not simply use the expected payment
instead. We note that this would not work because the
posterior probability of each payment is different for
different buyer types due to their different prior beliefs
on ω. The combined payment will not simply translate
to the same expectation for different buyer types due to
nonlinearity.

Our main result of this subsection is to prove the
optimality of CM-probR for correlated signals.

Theorem 4.1. When θ, ω are correlated, there always
exists an IC Consulting Mechanism with Probabilistic
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Figure 2: Illustration of the Main Idea for Proving Optimality of CM-probR.

Return (CM-probR) that maximizes the seller’s revenue
in both public and private buyer budget settings.

The proof of Theorem 4.1 relies on a novel use of the
duality theory. We defer the full proof to Appendix C
and only provide a sketch here. Our starting point is a
result by Babaioff et al. (2012) who proved that for the
setting without budget constraints, there always exists
an optimal mechanism of the following format: (1)
ask the buyer for a (possibly extremely large) deposit;
(2) reveal information through a signaling scheme; (3)
return to the buyer some amount of the deposit which
will depend on the signal sent. They term it a pricing
outcomes mechanism. As a first step, we generalize this
result and prove that it still holds even with budget
constraints, but with Step (1) now being to ask the
buyer to deposit his reported budget.

Observe that CM-probR mechanisms are a strict sub-
class of pricing outcomes mechanisms — in particular,
CM-probR’s use at most 2n signals and only two possible
payments, i.e., returning b + M or 0. We want to
prove that this much smaller class of mechanisms is
still able to achieve the optimal revenue. Our idea goes
as follows (also see illustrations in Figure 2). We first
formulate the problem of computing the optimal pricing
outcomes mechanism, which is a linear program P with
exponentially many variables and exponentially many
constraints. Naturally, any naive approach — including
the celebrated ellipsoid method — cannot be directly
used to solve such an LP or its dual. We nevertheless
work with the dual of P, denoted as LP D. Obviously, D
also has exponentially many variables and exponentially
many constraints, which is still difficult to solve.

The crux of our approach is to prove that the dual
LP D can be reduced to another linear program D′,
which will achieve the same optimal objective value as
of LP D, still has exponentially many constraints but
will have only polynomially many variables. At this
point, one natural idea is to apply the ellipsoid method
to solve D′ to obtain the optimal solution, which turns
out indeed is doable in polynomial time by designing
a separation oracle for D′. However, this idea suffers

from several drawbacks. First, the ellipsoid method is
widely known to be inefficient in practice. Second, the
dual of D′, denoted as P ′, is not our original LP P any
more (e.g., P ′ now has exponentially many variables but
polynomially many constraints) and it is not clear how
it can help to recover the optimal solution to P instead.
We believe that by opening the black box of Ellipsoid
method and after addressing the tedious arithmetic
issues (since the separation oracle for D′ needs to solve a
convex program, which can only be solved to be within
ε precision in poly(log(1/ε)) time), one may indeed be
able to recover the optimal solution to P. However,
this would take significantly more effort. Last but not
least, the optimal solution obtained through such an
optimization procedure is very unlikely to be a simple
and interpretable mechanism.

As a result, we choose to work with the dual of LP
D′, denoted as P ′, which recall that now has polynomi-
ally many constraints but exponentially many variables.
Surprisingly, we show that this transformation yields
a simple characterization of the optimal mechanism as
well as a much more efficient algorithm for computing
it. This is enabled by two intriguing properties of P ′
which we prove. First, any feasible solution to LP P ′
corresponds to a particular format of pricing outcomes
mechanisms, which only either asks the buyer for a net
payment of b or pays the buyer the amount of M , and
has no other format of transfers. Second, we prove that
there always exists an optimal solution to LP P ′, which
is a CM-probR mechanism, as described in Definition 4.1.
As a result, we can conclude that CM-probR can achieve
the optimal revenue since the optimal objective of P ′
must equal that of P due to strong duality.

4.2 Computing the Optimal CM-probR We now
show how to efficiently compute the optimal CM-probR
mechanism via a polynomial-size linear program. For
notational convenience, instead of pθ,b(ω, [a,+]) and
pθ,b(ω, [a,−]) as in Definition 4.1, we use variable
p+
θ,b(ω, a) and p−θ,b(ω, a) to denote the transition proba-

bilities. Then the utility of the buyer with type θ and
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(4.2)

max
∑
ω,θ,b µ(ω, θ, b)

∑
a

(
b · p+θ,b(ω, a)−M · p−θ,b(ω, a)

)
s.t. Uθ,b(θ, b) ≥ Uθ,b(θ′, b′), for θ, θ′, b ≥ b′ (IC)

Uθ,b(θ, b) ≥
∑
ω µ(ω|θ, b)u(ω, θ, a′), for (θ, b), a′ ∈ A (IR)

Uθ,b(θ, b) ≤
∑
a,ω,◦∈{+,−} µ(ω|θ, b)p◦θ,b(ω, a)(u(ω, θ, a)− t◦), for θ, b (OB)

Uθ,b(θ
′, b′) =

∑
a(z+θ,b,θ′,b′,a + z−θ,b,θ′,b′,a), for θ, b, θ′, b′

z◦θ,b,θ′,b′,a ≥
∑
ω µ(ω|θ, b)p◦θ′,b′(ω, a)(u(ω, θ, a′)− t◦), for θ, b, θ′, b′, a, a′, ◦ ∈ {+,−}∑

a∈A[p+θ,b(ω, a) + p−θ,b(ω, a)] = 1, for (θ, b), ω

0 ≤ p+θ,b(ω, a), p+θ,b(ω, a) ≤ 1, for θ, b, ω, a

Figure 3: LP formulation for the optimal CM-probR mechanism.

budget b when he reports (θ′, b′) is equal to

Uθ,b(θ
′, b′)

=
∑
a

(
max
a′

∑
ω

µ(ω|θ, b)p+
θ′,b′(ω, a)(u(ω, θ, a′)− b)

+ max
a′

∑
ω

µ(ω|θ, b)p−θ′,b′(ω, a)(u(ω, θ, a′) +M)
)

Introduce new variables

z+θ,b,θ′,b′,a = maxa′
∑
ω µ(ω|θ, b)p+θ′,b′(ω, a)(u(ω, θ, a′)− t+),

z−θ,b,θ′,b′,a = maxa′
∑
ω µ(ω|θ, b)p−θ′,b′(ω, a)(u(ω, θ, a′)− t−),

where t+ = b and t− = −M . Then the LP for
computing the optimal CM-probR mechanism can be
formulated as in Figure 3.

These overall establish the following theorem.

Theorem 4.2. The optimal CM-probR mechanism
can be computed by a single linear program of
poly(|Θ|, |A|, |Ω|) size for both public and private buyer
budget setting.

5 Extension to Black-box Prior Distributions

In this section, we extend our results to the setting
where the seller does not know the prior distribution
µ(ω, θ, b) and can only access the distribution by draw-
ing i.i.d. samples from µ(ω, θ, b). We call this model the
black-box prior distribution. This applies to the cases
where distributions are only accessible through samples.
We allow the signals to be correlated in this section,
which includes independent signals as a special case.
We provide a Monte-Carlo Sampling mechanism which
draws polynomially many samples at the beginning and
then computes an approximately optimal mechanism
using the empirical distribution. This mechanism
is nearly optimal and approximately achieves incentive
compatibility and individual rationality when the buyer
knows that the samples are drawn from the true distri-
bution. This mechanism is similar to the one in Dughmi
and Xu (2016) which computes nearly optimal persua-
sion under unknown prior distributions. Our problem is

Mechanism 1: CM-probR Mechanism for Black-
box Prior Distribution

(1) Observe private signal ω1. Ask the buyer to give
his type θ1 and deposit his budget b1.

(2) Draw n− 1 samples T = {(θ2, ω2, b2), . . . , (θn, ωn,
bn)} from µ(θ, ω, b) to get S = {(θ1, ω1, b1), . . . , (θn,
ωn, bn)} ∼ µn.

(3) Solve an LP to get a CM-probR mechanism MS .
The LP will be defined later.

(4) Use MS to sell the information to the buyer.
Specifically, according to ω1, θ1, b1, the mechanism
will randomly recommend an action aS(θ1, b1), and
charge a payment tS(θ1, b1) ∈ {b1,−M}.

more intricate because in persuasion the receiver’s type
(corresponding to the seller in our case) is known to the
sender, but in our problem the buyer’s type is randomly
drawn from a distribution and needs to be sampled. For
completeness, we fully state our algorithm and results
here and defer the full proof to Appendix D.

The seller will post the mechanism before observ-
ing ω1 and commit to follow the mechanism. The buyer
does not know µ(ω, θ, b) but knows how the mechanism
works. Our mechanism will satisfy the following prop-
erties.

Definition 5.1. (ε-IC) Mechanism 1 is ε-IC if for
any possible µ(ω, θ, b), it is ε-optimal for the buyer
to truthfully report and follow the mechanism’s recom-
mendation in expectation. More specifically, for any
µ(ω, θ, b), any (θ, b) 6= (θ′, b′) with b′ ≤ b,

Eω1∼µ(ω|θ,b) ET∼µn−1 EMS
[u(ω1, θ, aS(θ, b))− tS(θ, b)]

≥ Eω1∼µ(ω|θ,b) ET∼µn−1 EMS

[
u(ω1, θ, a

′(aS(θ′, b′)))

−tS(θ′, b′)
]
− ε.

for any deviation from the recommendation a′ : A→ A.

Definition 5.2. (ε-IR) Mechanism 1 is ε-IR if for
any possible µ(ω, θ, b), the buyer’s expected surplus is
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(5.3)

max
∑
ω,θ,b µ̂(ω, θ, b)

∑
a

(
b · p+θ,b(ω, a)−M · p−θ,b(ω, a)

)
s.t. Uθ,b(θ, b) ≥ Uθ,b(θ′, b′)− ε, for θ, θ′, b ≥ b′ (ε-IC)

Uθ,b(θ, b) ≥
∑
ω µ̂(ω|θ, b)u(ω, θ, a′)− ε, for (θ, b), a′ ∈ A (ε-IR)

Uθ,b(θ, b)− ε ≤
∑
a,ω,◦∈{+,−} µ̂(ω|θ, b)p◦θ,b(ω, a)(u(ω, θ, a)− t◦), for θ, b (ε-OB)

Uθ,b(θ
′, b′) =

∑
a(z+θ,b,θ′,b′,a + z−θ,b,θ′,b′,a), for θ, b, θ′, b′

z◦θ,b,θ′,b′,a ≥
∑
ω µ̂(ω|θ, b)p◦θ′,b′(ω, a)(u(ω, θ, a′)− t◦), for θ, b, θ′, b′, a, a′, ◦∑

a∈A[p+θ,b(ω, a) + p−θ,b(ω, a)] = 1, for (θ, b), ω

0 ≤ p+θ,b(ω, a), p+θ,b(ω, a) ≤ 1, for θ, b, ω, a

Figure 4: LP formulation for black-box prior distributions.

no less than −ε when he truthfully reports (θ, b) and
follows the recommendation. More specifically, for any
µ(ω, θ, b) and any (θ, b),

Eω1∼µ(ω|θ,b) ET∼µn−1 EMS

[
u(ω1, θ, aS(θ, b))− tS(θ, b)

]
≥ Eω1∼µ(ω|θ,b) [u(ω1, θ, a

′)]− ε

for all a′ ∈ A.

Definition 5.3. (ε-obedience) Mechanism 1 is ε-
obedient if for any possible µ(ω, θ, b), when the buyer
truthfully reports, in expectation it is ε-optimal for the
buyer to take action a when being recommended action
a. More specifically, for any µ(ω, θ, b), any (θ, b) and
mapping a′ : A→ A,

Eω1∼µ(ω|θ,b) ET∼µn−1 EMS
[u(ω1, θ, aS(θ, b))]

≥ Eω1∼µ(ω|θ,b) ET∼µn−1 EMS
[u(ω1, θ, a

′(aS(θ, b)))]− ε.

We now define the LP that solves MS . The
LP is basically the same as the one we use when µ
is known but with estimated µ(ω, θ, b) and µ(ω|θ, b).
For µ(ω, θ, b) in the objective function, we estimate it
with the empirical distribution over set S, denoted by
µ̂(ω, θ, b). For µ(ω|θ, b) in the constraints, we estimate
it with the empirical distribution over the set Sθ,b =
{ω1} ∪ {ωi : i ≥ 2 and (θi, bi) = (θ, b)}, denoted by
µ̂(ω|θ, b). Note that the definition of µ̂(ω|θ, b) does not
use the buyer’s report (θ1, b1). The LP with variables
p+, p− is shown in Figure 4.

Lemma 5.1. When MS is solved by the LP (5.3),
Mechanism 1 is ε-IR, ε-IC and ε-obedient.

The lemma is proved in Appendix D.1. We then show
that the mechanism extracts nearly optimal revenue
with a sufficient number of samples. WLOG we assume
u ∈ [0, 1], M ∈ [0, 1] and b ∈ [0, 1] for all b ∈ B.
We assume that µmin = minθ,b µ(θ, b) is an instance-
dependent constant.

Theorem 5.1. When we use Mechanism 1 with
LP (5.3) with

n ≥ Θ

(
ln(G/δ) ·max

{
|A|2

ε2 · µmin
,

1

µ2
min

})
= Θ

(
|A|2 · ln(G/δ)

ε2

)
,

where G = max{|Θ|, |B|, |A|} and µmin = minθ,b µ(θ, b),
the mechanism will be ε-IR, ε-IC and ε-obedient, and
extract revenue no less than Revµ(p∗) − δ. Revµ(p∗) is
the expected revenue of the optimal solution of (4.2) p∗.

The theorem is proved in Appendix D.2.
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Appendix A Revelation Principle

Consider any generic interactive protocol M , we con-
struct a mechanism M ′ that extracts no less revenue,
and the buyer truthfully report type θ and budget b at
the root. The root of M ′ is just the buyer node that
asks the buyer to report type θ and b. Then we add a
subtree Tθ,b below the root for each (θ, b). The subtree
Tθ,b is just a copy of M in which the seller simulates the
optimal strategy of the buyer with type θ and budget b
at each buyer node. So Tθ,b only has seller nodes and
transfer nodes. Clearly the buyer will truthfully report
θ and b and the revenue of M ′ is the same as M .

Appendix B Omitted Proofs in Section 3

B.1 Proof of Theorem 3.1 Our proof has two main
steps. First, we show that it suffices to consider one-
round mechanisms. We employ a characterization of
Babaioff et al. (2012) who show that there always
exists an optimal one-round mechanism which is a
pricing mappings mechanism (defined formally next)
for a buyer without budget constraints. We generalize
this characterization to the public budget case. Our
second step is then to show that such a pricing mappings
mechanism can always be converted to a consulting
mechanism without revenue loss.

Definition B.1. A pricing mappings mechanism with
direct payment proceeds as follows:

1. Ask the buyer to report his type θ̂. His budget is
publicly known as b.

2. According to the reported type θ̂, charge the buyer
an amount of tθ̂ ≤ b.

3. Choose a signaling scheme S(θ̂) to send a signal to
the buyer.

Formally, the protocol tree of a pricing mappings mech-
anism has three layers: a buyer node root, |Θ| transfer
nodes below the root, and each transfer node connects to
a signaling scheme S(θ).

We first show that there always exists an optimal
mechanism which is a pricing mappings mechanism with
direct payment.
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Lemma B.1. When the buyer has a public fixed budget
b, and the buyer signal θ is independent from the seller
signal ω, there always exists an optimal mechanism
which is an IC pricing mappings mechanism with direct
payment.

Proof. According to Lemma 2.1, there exists an optimal
IC revelation mechanism M . We first reduce M so that
the buyer will always follow the protocol until a leaf is
reached. If a type-θ buyer abort the protocol at some
node n after truthfully reporting his type, we can just
cut away the subtree under n. We claim that this will
not change the truthfulness guarantee and the revenue
will also remain the same. First of all, for a buyer with
type θ, the protocol is the same because we only remove
the part he is going to abort. For buyers with other
type θ′ 6= θ, if it is better for them to misreport θ when
the subtree under n is cut away, then it should also be
better for them to misreport θ and abort at n in the
original protocol, which is contradictory to that M is
IC. Consequently, the mechanism is still truthful and
everyone will pay the same amount of money.

Now let’s just assume the buyer will always fol-
low the protocol until reaching a leaf, after truthfully
reporting his type. We construct a pricing mappings
mechanism with direct payment that extracts the same
revenue as M . Let l1, . . . , lm be all the leaves of M that
can be reached with positive probability. Let pθ(ω, li)
be the probability that the protocol ends at leaf li when
the seller’s private signal is realized to ω and the buyer
reports type θ at the beginning. Define τ(li) to be the
total transfer on the path from the root to li. Since the
signals are independent, the buyer’s prior for ω is al-
ways the marginal distribution µ(ω). As a result, for a
buyer with any type, if he reports type θ and follows the
protocol until a leaf is reached, his expected total pay-
ment will always be equal to

∑
li
τ(li)

∑
ω µ(ω)pθ(ω, li).

Note that the budget b should always allow the buyer to
follow any path from the root to a leaf, in other words,
the buyer will never have to quit the protocol because
he cannot afford the payment at some step. Because if
this is not true, a buyer with a certain type will have
to quit before reaching a leaf, which is contradictory to
our assumption.

Therefore we construct an optimal pricing map-
pings mechanism with direct payment as follows:

• tθ =
∑
li
τ(li)

∑
ω µ(ω)pθ(ω, li),

• the signaling scheme S(θ) has leaves l1, . . . , lm and
the transition function is just pθ(ω, li), so that the
buyer’s posterior at each li remains the same.

This mechanism is still truthful because a buyer who
gains from misreporting in this mechanism will prefer to

misreport in the same way and then follow the protocol
until reaching a leaf in M . It should also hold that
tθ ≤ b, since τ(li) ≤ b for all li. It is easy to see that
the revenue remains the same.

We emphasize that the above proof relies crucially
on the assumptions that (1) the signals are independent
and (2) there is a public fixed budget. If θ and ω are
correlated, the buyer’s prior for ω will be dependent on
θ, which is equal to µ(ω|θ). This means that buyers
with different types will have different expectations of
how much they’re going to pay. As a result, we cannot
define tθ using the common prior. If the budget is not
fixed, it may not be true that the buyer will always have
enough budget to follow M until reaching a leaf when he
misreports. So in the original mechanism M , the buyer
may not be able to get the same utility as in the new
mechanism when he misreports a type. Consequently,
the new mechanism may not be IC.

Although we have now reduced the problem to
designing simple one-round mechanisms, the optimal
signal schemes S(θ) can still be very complicated. Next,
we show that any pricing mappings mechanism can be
converted to a consulting mechanism without revenue
loss. In other words, the signal sent by the seller can be
converted to a recommendation about the best action a.
Since there are |A| possible actions, the signal schemes
S(θ) will have no more than |A| leaves. Similar results
appeared in Proposition 1 of Bergemann et al. (2018).

Lemma B.2. For any IC pricing mappings mechanism
with direct payment, there exists an IC consulting
mechanism with direct payment that extracts no less
revenue.

Proof. Let M be any IC pricing mappings mechanism
with direct payment. Let S(θ) be the signaling scheme
for the type-θ buyer. Let s1, . . . , sm be the leaves of
S(θ), and let a1, . . . , am be the optimal actions of a
type-θ buyer when the signal sent by S(θ) is realized
to s1, . . . , sm respectively.

Suppose aj , ak both equal a ∈ A for some j and k,
we show that we can without loss merge the two leaves
sj , sk. That is, whenever the seller moves to sj , she
moves to sk instead. The transition function of S(θ) is
updated as follows: p′(ω, sk) ← p(ω, sj) + p(ω, sk) and
p′(ω, sj)← 0 for all ω. The payments keep unchanged.
Therefore, the seller’s revenue will not change if the
buyer still truthfully reports.

We claim that this new mechanism will not change
the utility of a type-θ buyer. First of all, the optimal
action for the type-θ buyer at leaf sk is still a. This is
because, by definition, we have

a = argmax
a∈A

∑
ω

µ(ω)p(ω, sj)u(ω, θ, a),
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a = argmax
a∈A

∑
ω

µ(ω)p(ω, sk)u(ω, θ, a).

Therefore argmaxa∈A
∑
ω µ(ω)p′(ω, sj)u(ω, θ, a) must

also equal a. As a result, the expected utility of type-θ
buyer will not change as

∑
ω µ(ω)p(ω, sj)u(w, θ, a) +∑

w µ(ω)p(ω, sk)u(ω, θ, a) =∑
w µ(ω)p′(ω, sj)u(w, θ, a).

Next we argue that the utility of any other type-θ′

buyer will not increase when he misreport θ. This is
because his utility from the original two leaves sj , sk is

max
a∈A

∑
ω

µ(ω)p(ω, sj)u(ω, θ′, a)

and
max
a∈A

∑
ω

µ(ω)p(ω, sk)u(ω, θ′, a).

Their sum is at least

max
a∈A

∑
ω

µ(ω)[p(ω, sj) + p(ω, sk)] · u(w, θ′, a).

To sum up, the new mechanism will not change
the utility of type-θ buyer and will not increase the
other buyers’ utility when they misreport θ, and thus
will remain IC and IR. Moreover, the revenue does not
change. We can perform such merging operation until
each leaf corresponds to a different action a ∈ A. To
that end, each signal can be viewed as an “honest”
action recommendation which will indeed maximizes the
buyer’s expected utility. This is precisely a consulting
mechanism, as desired.

Lemma B.1 and B.2 together yield a proof of
Theorem 3.1.

B.2 Proof of Theorem 3.2 The proof consists of
two parts as the public budget case. We will first prove
the existence of a one-round optimal mechanism, a pric-
ing mappings mechanism with deposit and return, and
then convert this mechanism to a consulting mechanism
with deposit and return.

Definition B.2. A pricing mappings mechanism with
deposit and return proceeds as follows:

1. Ask the buyer to report his type θ̂ and budget b̂, and
then deposit his budget b̂.

2. According to the reported type θ̂ and the deposit
amount b̂, return the buyer an amount of b̂− tθ̂,̂b ≥
0.

3. Choose a signaling scheme S(θ̂, b̂) to send a signal
to the buyer.

Formally, the protocol tree of a pricing mappings mech-
anism has three layers: a buyer node root, |Θ|·|B| trans-
fer nodes below the root, and each transfer node connects
to a signaling scheme S(θ, b).

Lemma B.3. When the buyer has a private budget, and
(θ, b) is independent from ω, there always exists an
optimal mechanism which is an IC pricing mappings
mechanism with deposit and return.

Proof. According to Lemma 2.1, there exists an optimal
IC revelation mechanism M . As in the proof of
Lemma B.1, we can reduce M so that the buyer
will always follow the protocol until reaching a leaf.
Now let’s just assume the buyer will always follow the
protocol until reaching a leaf, after truthfully reporting
his type and budget. We construct a pricing mappings
mechanism with deposit and return that extracts the
same revenue as M . Let l1, . . . , lm be all the leaves of
M that can be reached with positive probability. Let
pθ,b(ω, li) be the probability that the protocol ends at
leaf li when the seller’s private signal is realized to ω
and the buyer reports θ and b at the beginning. Define
τ(li) to be the total transfer on the path from the root
to li. Since (θ, b) is independent from ω, the buyer’s
prior for ω is always the marginal distribution µ(ω). As
a result, for a buyer with any type and budget, if he
reports type θ, b and follows the protocol until a leaf is
reached, his expected total payment will always be equal
to
∑
li
τ(li)

∑
ω µ(ω)pθ,b(ω, li). Therefore we construct

an optimal pricing mappings mechanism with deposit
and return as follows:

• tθ,b =
∑
li
τ(li)

∑
ω µ(ω)pθ,b(ω, li),

• the signaling scheme S(θ, b) has leaves l1, . . . , lm
and the transition function is just pθ,b(ω, li), so that
the buyer’s posterior at each li remains the same.

Note that the buyer can never overreport his budget
in this mechanism because he is asked to deposit the
full budget at the beginning. This guarantees the
truthfulness of the new mechanism because a (θ, b)-
buyer who gains from misreporting (θ′, b′) with b′ ≤ b
can also get higher utility in M by misreporting (θ′, b′)
and following the protocol until a leaf is reached. Since
b ≥ b′, he should always have enough budget to reach
the leaves in M if he reports b′. It should also hold that
tθ,b ≤ b, since for any leaf li that can be reached by
(θ, b)-buyer with positive probability must have τ(li) ≤
b. Finally it is easy to see that the revenue remains the
same.

Same as the public budget case, any pricing map-
pings mechanism with deposit and return can be with-
out loss converted into a mechanism that recommends
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actions to the buyer, with the same deposit and return
payment method.

Lemma B.4. For any IC pricing mappings mechanism
with deposit and return, there exists an IC consulting
mechanism with deposit and return that extracts no less
revenue.

The proof follows by a simple adaptation of the
proof of Lemma 3.1, with S(θ, b) in place of S(θ).

Appendix C Proof of Theorem 4.1

We start by describing another class of mechanisms
defined as follows, which is a strictly broader class than
CM-probR mechanisms and has been proved to contain
an optimal mechanism for the setting with no budget.

Definition C.1. A pricing outcomes mechanism with
deposit and return (POM-depR) proceeds as follows:

1. The seller commits to a signaling scheme for
each (θ, b), described by {pθ,b(ω, σ)}ω∈Ω,σ∈Σ where
pθ,b(ω, σ) denotes the probability of sending signal
σ upon seller signal ω, and a payment amount
tθ,b(σ)(≤ b) that depends on the realized signal σ.

2. Ask the buyer to report his type θ̂ and deposit his
budget b̂.

3. Sample a signal σ ∼ pθ̂,̂b(ω) and sends σ to the
buyer

4. Return b̂− tθ̂,̂b(σ) back to the buyer.

As our first step, we generalize the result of Babaioff
et al. (2012) and show that for budget-constrained
buyers, pricing outcomes mechanisms with deposit and
return (POM-depR) can also achieve optimality.

Lemma C.1. For a budget-constrained buyer, there al-
ways exists an IC pricing outcomes mechanism with de-
posit and return (POM-depR) that maximizes the rev-
enue.

Proof. According to Lemma 2.1, there exists an IC
optimal revelation mechanism M . We can reduce M
so that the buyer will always follow the protocol until
reaching a leaf. Now let’s just assume the buyer will
always follow the protocol until reaching a leaf, after
truthfully reporting his type and budget. We construct
a pricing outcomes mechanism with deposit and return
that extracts the same revenue as M . Let l1, . . . , lm be
all the leaves of M that can be reached with positive
probability. Let pθ,b(ω, li) be the probability that the
protocol ends at leaf li when the seller’s private signal
is realized to ω and the buyer reports θ and b at the

beginning. Define τ(li) to be the total transfer on the
path from the root to li. Then we construct an optimal
pricing outcomes mechanism as follows:

• the signaling scheme S(θ, b) has leaves l1, . . . , lm
and the transition function is just pθ,b(ω, li),

• the refund below leaf li is set to b − τ(li) so that
the net transfer equals τ(li).

Since the buyer will never defect in M , the refund
amount b − τ(li) is always nonnegative, so the buyer
will not have chance to defect in the last step.

This pricing outcomes mechanism is still truthful
because a buyer who gains from misreporting in this
mechanism will prefer to misreport in the same way in
M . Then since the net transfer remains the same on
each path, and the probability of ending at each leaf
remains the same, the revenue does not change.

Observe that any CM-probR mechanism is also a
POM-depR mechanism since we can view each [a, i] ∈
A × {+,−} as a signal. However, CM-probR is signifi-
cantly simpler — it only has two payments, i.e., b and
−M , and it uses at most 2n signals. Our goal is to
show that this much smaller class of mechanisms can
still achieve optimality. For notational convenience, we
will prove our result for the case of public budget. It
is straightforward to generalize the argument to private
budget, simply by adding additional incentive compat-
ibility constraints to elicit truthful budget report (or
equivalently, by viewing the buyer type θ as including
the budget information).

Our starting point is an LP formulation proposed by
Babaioff et al. (2012) with exponentially many variables
but polynomially many constraints for computing the
optimal POM-depR mechanism. We now adapt that
LP to incorporate buyer budget constraints, which
leads to an LP with exponentially many variables and
constraints.

To describe the LP, we will need a different but
equivalent definition of a signaling scheme. Recall
that we use {pθ(ω, σ)}ω∈Ω,σ∈Σ to denote a signaling
scheme for buyer type θ (omitting the subscript of bud-
get) where

∑
σ∈Σ pθ(ω, σ) = 1 for each ω, which is

drawn from the prior distribution {µ(ω)}ω∈Ω. Equiv-
alently, this signaling scheme can be viewed as a con-
vex decomposition of the prior µ ∈ ∆Ω into a set
of posterior distributions. In particular, the posterior

distribution { pθ(ω,σ)∑
ω′∈Ω pθ(ω′,σ)}ω∈Ω has convex coefficient∑

ω′∈Ω pθ(ω
′, σ) (i.e., the probability).

As a result, a signaling scheme pθ can be equiva-
lently described by a variable xθ(q) ∈ [0, 1] for each pos-
sible posterior distribution q ∈ ∆Ω, satisfying

∑
q xθ(q)·
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q = µ so that {xθ(q)}q∈∆Ω indeed represents a convex
decomposition of µ. Crucially, given any posterior dis-
tribution q, each buyer will interpret it differently due
to different information the buyer type θ possess regard-
ing ω. Concretely, as observed by Babaioff et al. (2012),
buyer type θ will interpret any posterior q as Dθq (up to
a normalization factor) whereDθ is a Ω×Ω diagonal ma-
trix with µ(θ|ω) for all ω in the diagonal. A minor issue
is that we now have infinitely many variables since each
q ∈ ∆Ω corresponds to a variable xθ(q). This turns out
to be fine for our approach. However, for convenience,
we invoke a simplification by Babaioff et al. (2012) who
show that one can without loss of generality focus on a
set Q∗ of finite but exponentially many possible poste-
rior beliefs q’s since only these q’s can show up in the
optimal solution.

Now we are ready to state the linear program for
computing the optimal POM-depR mechanism, with
variable xθ(q) and t̃θ(q) = xθ(q) · tθ(q) where tθ(q) is
the corresponding buyer total payment for the realized
signal inducing posterior q (negative tθ(q) means that
the seller will pay the buyer).
(3.5)

max
∑
θ,q(1

tDθq) · t̃θ(q)
s.t.

∑
q[vθ(Dθq)xθ(q)− (1tDθq)t̃θ(q)]

≥ vθ(Dθµ), for θ ∈ Θ∑
q[vθ(Dθq)xθ(q)− (1tDθq)t̃θ(q)]

≥
∑
q[vθ(Dθq)xθ′(q)− (1tDθq)t̃θ′(q)], for θ′ 6= θ∑

q xθ(q) · q = µ, for θ ∈ Θ

b · xθ(q) ≥ t̃θ(q) ≥ −M · xθ(q), for θ, q ∈ Q∗
xθ(q) ≥ 0, for θ, q ∈ Q∗

Here vθ(q) = maxa′∈AEω∼q u(ω, θ, a′) denotes the
type-θ buyer’s optimal expected utility when he believes
that ω follows distribution q. Note that q here does not
have to be normalized to have l1 norm 1 since vθ(q) is
linear in any re-scaling factor of q.

We mention a subtle issue here regarding the above
LP formulation. Our LP (3.5) is similar to an LP for-
mulation given in Babaioff et al. (2012) for computing
the optimal pricing outcomes mechanism without bud-
get constraints. More concretely, the LP of Babaioff
et al. (2012) does not have the constraint b · xθ(q) ≥
t̃θ(q) ≥ −M · xθ(q). However, that LP does not exactly
compute the optimal pricing outcomes mechanism since
it may have an optimal solution such that t̃θ(q) 6= 0 but
xθ(q) = 0 for some θ, q, which does not correspond to
any pricing outcomes mechanisms. This discrepancy
is due to their variable exchange t̃θ(q) = xθ(q)tθ(q)
which does not result in an equivalent formulation since
the constraint xθ(q) = 0 ⇒ t̃θ(q) = 0 cannot not
be enforced after the variable change (and cannot be
casted as any linear constraint). To deal with this is-
sue, Babaioff et al. (2012) introduced a technique of

slightly perturbing the optimal solution and look for
an ε-optimal solution which always satisfies xθ(q) 6= 0
whenever t̃θ(q) 6= 0. As a result, this technique can only
give an approximately optimal pricing outcomes mech-
anism, and may result in infinitely large payment as the
approximation error ε tends to 0.

Interestingly, it turns out that the budget con-
straints help us to get rid of the above discrepancy. In
particular, our LP (3.5) exactly computes the optimal
pricing outcomes mechanism. This is because the bud-
get constraint b · xθ(q) ≥ t̃θ(q) ≥ −M · xθ(q) automat-
ically implies that t̃θ(q) = 0 when xθ(q) = 0, assuming
all budgets are finite. We summarize this observation
in the following lemma.

Lemma C.2. The optimal solution to LP (3.5) corre-
sponds exactly to an optimal pricing outcomes mecha-
nism.

The main challenge for solving LP (3.5) is that it has
both exponentially many variables and constraints (due
to budget constraints) since the set Q∗ is exponentially
large. It is not even clear that it has an optimal solution
with polynomial size, let alone solving it to output the
optimal solution in polynomial time. We consider the
dual program of LP (3.5), formulated as in (3.4) where
{αθ}θ∈Θ, {λθ,θ′}θ 6=θ′ , {yθ ∈ RΩ}θ∈Θ and {γθ,q, ξθ,q}θ,q
are the dual variables for the first, second, third and
forth sets of constraints in LP (3.5), respectively.

Obviously, LP (3.4) is not tractable neither as it still
has exponentially many variables and constraints. Our
next main step is to prove that the variables γθ,q, ξθ,q
in LP (3.4) can be eliminated to induce a different
linear program which has the same optimal objective
as LP (3.4) but only has polynomially many variables.
For notational convenience, we define the following
functions:

gθ(λ, α; q) = (1tDθq)(1− αθ −
∑
θ′ 6=θ

λθ,θ′) +
∑
θ′ 6=θ

λθ′,θ(1
tDθ′q)

hθ(λ, α; q) = vθ(Dθq)(αθ +
∑
θ′ 6=θ

λθ,θ′)−
∑
θ′ 6=θ

λθ′,θvθ′(Dθ′q).

Note that gθ, hθ are both linear functions of α, λ for
any given q ∈ Q∗. Using the above simplification, we
can re-write LP (3.4) as in (3.6).

Lemma C.3. LP (3.6) has the same optimal objective
value as the following LP with only variables α, λ, y:
(3.7)

min
∑
θ µ · yθ − vθ(Dθµ) · αθ

s.t. yθ · q − b · gθ − hθ(λ, α, q) ≥ 0, for θ, q
yθ · q +M · gθ − hθ(λ, α, q) ≥ 0, for θ, q
α, λ ≥ 0

Proof. The main idea of the proof is to eliminate the
variables γθ,q, ξθ,q.
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(3.4)

min
∑
θ µ · yθ − vθ(Dθµ) · αθ

s.t. γθ,q − ξθ,q − (1tDθq)(1− αθ −
∑
θ′ 6=θ λθ,θ′)−

∑
θ′ 6=θ λθ′,θ(1

tDθ′q) = 0, for θ, q

yθ · q − bγθ,q −Mξθ,q − vθ(Dθq)(αθ +
∑
θ′ 6=θ λθ,θ′) +

∑
θ′ 6=θ λθ′,θvθ′(Dθ′q) ≥ 0, for θ, q

α, λ, γ, ξ ≥ 0

Figure 5: Dual LP of (3.5).

(3.6)
min

∑
θ µ · yθ − vθ(Dθµ) · αθ

s.t. γθ,q − ξθ,q − gθ(λ, α; q) = 0, for θ, q
yθ · q − bγθ,q −Mξθ,q − hθ(λ, α; q) ≥ 0, for θ, q
α, λ, γ, ξ ≥ 0

Figure 6: Re-Writing of LP (3.4)

First, we claim that LP (3.6) always admits an
optimal solution in which either γθ,q = 0 or ξθ,q = 0
for any θ, q. In particular, let (α∗, λ∗, y∗, γ∗, ξ∗) be
any optimal solution to LP (3.6). We construct a new
optimal solution which satisfies the desired property, as
follows. For any index pair (θ, q):

• If γ∗θ,q ≥ ξ∗θ,q, define γ′θ,q = γ∗θ,q − ξ∗θ,q and ξ′θ,q = 0;

• If γ∗θ,q < ξ∗θ,q, define γ′θ,q = 0 and ξ′θ,q = ξ∗θ,q − γ∗θ,q.

We claim that (α∗, λ∗, y∗, γ′, ξ′) is a feasible and
optimal solution to LP (3.4). The new variable val-
ues achieve the same (optimal) objective value as
(α∗, λ∗, y∗, γ∗, ξ∗) since the objective function only
depends on α∗, y∗. We only need to argue that
(α∗, λ∗, y∗, γ′, ξ′) is feasible. The non-negativity of
γ′θ,q, ξ

′
θ,q is obvious from construction. The first set of

constraint is satisfied because γ∗θ,q − ξ∗θ,q = γ′θ,q − ξ′θ,q in
our construction and gθ does not depend on γθ,q, ξθ,q.
The second set of constraints are also feasible because
y∗θ · q − bγ∗θ,q −Mξ∗θ,q − hθ(λ∗, α∗; q) ≥ 0, and the con-
structed variable value γ′θ,qξ

′
θ,q satisfy γ′θ,q ≤ γ∗θ,q, ξ′θ,q ≤

ξ∗θ,q and thus will only increase the left-hand side of
the above inequality. Therefore the “≥” inequality still
holds.

Thanks to the above argument, we can impose the
complementarity constraints γθ,q ·ξθ,q = 0 into LP (3.6),
without changing its optimal objective value. As a
result, the equality constraint γθ,q−ξθ,q−gθ(λ, α; q) = 0
in LP (3.6), together with γθ,q · ξθ,q = 0, can be used
to uniquely determine the value of γθ,q and ξθ,q. In
particular, if gθ(λ, α; q) ≥ 0, we must have γθ,q =
gθ(λ, α; q) and ξθ,q = 0. Otherwise, we must have
γθ,q = 0 and ξθ,q = −gθ(λ, α; q). To sum up, γθ,q and
ξθ,q can be uniquely determined as follows:

γθ,q = 1 {gθ(λ, α, q) ≥ 0} gθ(λ, α, q),
ξθ,q = −1 {gθ(λ, α, q) ≤ 0} gθ(λ, α, q),

where 1(X) is the indicator function which equals 1
when condition X holds.

We can now plug in the above value of γθ,q, ξθ,q into
the left-hand side of the second constraint of LP (3.6),
and obtain the following inequality constraint for any
θ, q:

yθ · q − b · 1 {gθ(λ, α, q) ≥ 0} gθ(λ, α, q)
(3.8)

+M · 1 {gθ(λ, α, q) ≤ 0} gθ(λ, α, q)− hθ(λ, α; q) ≥ 0

Observe that

−b · 1 {gθ(λ, α, q) ≥ 0} gθ(λ, α, q)
+M · 1 {gθ(λ, α, q) ≤ 0} gθ(λ, α, q)

= min{−b · gθ(λ, α, q),M · gθ(λ, α, q)}

which is the minimum of two linear functions and thus
is concave. As a result, Inequality constraint (3.8) can
be re-written as the following

yθ · q − b · 1 {gθ(λ, α, q) ≥ 0} gθ(λ, α, q) +M ·
1 {gθ(λ, α, q) ≤ 0} gθ(λ, α, q)− hθ(λ, α; q) ≥ 0

⇔ yθ · q + min{−b · gθ(λ, α, q),M · gθ(λ, α, q)}
−hθ(λ, α; q) ≥ 0

⇔ min{−b · gθ(λ, α, q),M · gθ(λ, α, q)}
≥ hθ(λ, α; q)− yθ · q

⇔ −b · gθ(λ, α, q) ≥ hθ(λ, α; q)− yθ · q
& M · gθ(λ, α, q) ≥ hθ(λ, α; q)− yθ · q

Substituting Inequality constraint (3.8) by the above
to inequalities, we obtain LP (3.7) which has the same
optimal objective as LP (3.6).

We now plugging the concrete form of g and h
into LP (3.7) and obtain (3.9), which has the same
objective as LP (3.4) but with only polynomially many
constraints.

At this point, a natural approach is to design
an efficient separation oracle for LP (3.9) and then
employ the celebrated Ellipsoid method to solve it
with a hope to also obtain an optimal solution to LP
(3.5). Due to the reasons we mentioned in the main
body, here we adopt a different approach and instead
turn to the dual program of LP (3.9). However, the
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(3.9)

min
∑
θ µ · yθ − vθ(Dθµ) · αθ

s.t. −αθ
[
vθ(Dθq)− b(1tDθq)

]
−
∑
θ′ λθ,θ′

[
vθ(Dθq)− b(1tDθq)

]
+∑

θ′ λθ′,θ

[
vθ′(Dθ′q)− b(1tDθ′q)

]
+ yθq ≥ b(1tDθq), for θ, q

−αθ
[
vθ(Dθq) +M(1tDθq)

]
−
∑
θ′ λθ,θ′

[
vθ(Dθq) +M(1tDθq)

]
+∑

θ′ λθ′,θ

[
vθ′(Dθ′q) +M(1tDθ′q)

]
+ yθq ≥ −M(1tDθq), for θ, q

α, λ ≥ 0

Figure 7: Re-Writing of LP (3.7)

benefit of considering the dual program is not clear
at this point yet since it will have exponentially many
variables. Interestingly, we show that by exploring some
“local convexity” structure of the formulation the dual
program actually can be solved much more efficiently.

We start by deriving the dual of LP (3.9) as
in (3.10), with variable x+

θ (q), x−θ (q) for the two different
sets of constraints. Interestingly, it turns out that
solutions to LP (3.10) have a natural interpretation
as a special type of pricing outcomes mechanism, as
formalized in the following lemma.

Lemma C.4. Any feasible solution to LP (3.10) is an
incentive compatible pricing outcomes mechanism which
uses only two different payment methods: either buyer
pays b to the seller or the seller pays M to the buyer.

Proof. The proof is almost evident from the formula-
tion of LP (3.10). Any feasible solution to LP (3.10)
corresponds to, for any buyer type θ, a convex decom-
position of the prior µ where the posterior is q with

probability x+
θ (q)+x−θ (q). Moreover,

x+
θ (q)

x+
θ (q)+x−θ (q)

of the

time the buyer pays b to the seller in which case the
buyer’s remaining utility is [vθ(Dθq)− b(1tDθq)] (up to
a normalization factor). Otherwise, the seller pays M to
the buyer in which case the buyer’s remaining utility is
[vθ(Dθq)+M(1tDθq)]. As a result, it is easy to see that
the first and second sets of constraints in LP (3.10) are
precisely the individual rationality and incentive com-
patibility constraints. Moreover, it is also easy to see
that the objective function is precisely the seller’s rev-
enue under this mechanism. This concludes the proof.

Next, we show that LP (3.10) always admits an
optimal solution which is a CM-probR. More precisely,
x+
θ , x

−
θ support on at most |A| different posteriors, each

resulting in a different best response action for buyer
type θ.

Lemma C.5. There always exists an optimal solution
to LP (3.10) where, for any θ ∈ Θ, both x+

θ and x−θ are

supported on at most |A| different posterior q’s, each
inducing a different best response action for buyer type
θ. In other words, LP (3.10) always admits an optimal
solution which is a CM-probR as described in Definition
4.1 by viewing each posterior distribution as an action
recommendation.

Proof. We prove the lemma by converting any opti-
mal solution to LP (3.10) to a feasible and optimal
solution that satisfies the desired property. Let x =
{x+

θ (q), x−θ (q)}θ∈Θ,q∈Q∗ be an arbitrary optimal solu-
tion to LP (3.10). Let q1, q2 ∈ Q∗ be two poste-
riors such that x+

θ (q1), x+
θ (q2) > 0 and buyer utility

vθ(Dθq1), vθ(Dθq2) are both achieved by the same best
action â. We now adjust x as follows. Denote

q =
1

x+
θ (q1) + x+

θ (q2)

[
x+
θ (q1) · q1 + x+

θ (q2) · q2

]
∈ ∆Ω

and let x̂+
θ (q) = x+

θ (q1) + x+
θ (q2) whereas x̂+

θ (q1) =
0, x̂+

θ (q2) = 0. Observe that the buyer θ’s
optimal action on posterior q is still â because
â = arg maxa∈A

∑
ω∈Ω(q1)ωu(w, θ, a) and â =

arg maxa∈A
∑
ω∈Ω(q2)ωu(w, θ, a) imply that â =

arg maxa∈A
∑
ω∈Ω[c1(q1)ω + c2(q2)ω]u(w, θ, a) for any

constants c1, c2 > 0. As a result, we have
(3.11)
c1 · vθ(Dθq1) + c2 · vθ(Dθq2) = vθ

(
Dθ[c1 · q1 + c2 · q2]

)
We now argue that our adjustment to x maintains

feasibility and optimality. The adjustment does not
change the objective because

b(1tDθq) · x̂+θ (q)

= b

[
1tDθ · (x̂+θ (q) · q)

]
= b

[
1tDθ · (x+θ (q1) · q1 + x+θ (q2) · q2)

]
= b(1tDθq1) · x+θ (q1) + b(1tDθq2) · x+θ (q2)

We thus only need to prove that it remains feasible.
The adjustment does not change the first constraint,
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(3.10)

max
∑
θ,q

[
b(1tDθq) · x+θ (q)−M(1tDθq) · x−θ (q)

]
s.t.

∑
q

[
[vθ(Dθq)− b(1tDθq)]x+θ (q) + [vθ(Dθq) +M(1tDθq)]x

−
θ (q)

]
≥ vθ(Dθµ), for θ ∈ Θ∑

q

[
[vθ(Dθq)− b(1tDθq)]x+θ (q) + [vθ(Dθq) +M(1tDθq)]x

−
θ (q)

]
≥
∑
q

[
[vθ(Dθq)− b(1tDθq)]x+θ′(q) + [vθ(Dθq) +M(1tDθq)]x

−
θ′(q)

]
, for θ′ 6= θ∑

q[x
+
θ (q) + x−θ (q)] · q = µ, for θ ∈ Θ

xθ(q) ≥ 0, for θ, q

Figure 8: Dual LP of (3.9).

because [
vθ(Dθq)− b(1tDθq)

]
x̂+θ (q)

= u

[
Dθ · [x̂+θ (q) · q]

]
− b
[
1tDθ · (x̂+θ (q) · q)

]
= u

[
Dθ · [x+θ (q1) · q1 + x+θ (q2) · q2]

]
−b
[
1tDθ · (x+θ (q1) · q1 + x+θ (q2) · q2)

]
=

[
vθ(Dθq1)− b(1tDθq1)

]
x+θ (q1)

+

[
vθ(Dθq2)− b(1tDθq2)

]
x+θ (q2)

where the last equality is due to Inequality (3.11).
Next, we show that the second set of constraints

also remain feasible under our adjustment. The above
argument shows that the value of its left-hand side
remains the same for any θ, q. We now show that the
adjustment will not increase the value of the right-hand
side. The only possibility that the value of the right-
hand side could change is when θ′ in x+

θ′(q) correspond

to our focus of buyer type θ since all other x+
θ (q)’s are

not changed. In this case, we have for any θ′ 6= θ

[vθ′(Dθ′q)− b(1tDθ′q)]x̂+θ (q)

≤
[
vθ′(Dθ′q1) ·

x+θ (q1)

x+θ (q1) + x+θ (q2)

+vθ′(Dθ′q2) ·
x+θ (q2)

x+θ (q1) + x+θ (q2)

]
· x̂+θ (q)

−b(1tDθ′q) · x̂+θ (q)

=

[
vθ′(Dθ′q1) · x+θ (q1) + vθ′(Dθ′q2) · x+θ (q2)

]
−b(1tDθ′q1) · x+θ (q1)− b(1tDθ′q2) · x+θ (q2)

where the inequality is due to the convexity of vθ′

function and our definition of q = 1
x+
θ (q1)+x+

θ (q2)

[
x+
θ (q1)·

q1 +x+
θ (q2) · q2

]
as a convex combination of q1, q2. This

shows that our adjustment will not increase the value
of the right-hand side of the second constraint for any
θ, θ′. It is easy to see that the third set of constraints
also hold. As a result, the adjusted solution remains
feasible.

The above adjustment can be done for any θ and
for both x+

θ and x−θ . Therefore, ultimately, we can
obtain an optimal solution with the desired property
as described in the lemma.

The following lemma concludes our proof of the
characterization part in Theorem 4.1.

Lemma C.6. The optimal revenue can be achieved by
an IC Consulting Mechanism with Probabilistic Return
(CM-probR).

Proof. This is because the optimal objective of LP
(3.10) — i.e., the maximium revenue acheived by the
optimal CM-probR — equals the optimal objective of
LP (3.5), i.e., the maximum revenue achieved by the
optimal pricing outcomes mechanims, which is proved
to be an optimal mechanim by Lemma C.1.

Appendix D Omitted Proofs in Section 5

D.1 Proof of Lemma 5.1 We first prove that ε-
IC can be guaranteed by the IC constraint in the LP.
Consider any µ(ω, θ, b), any (θ, b). The expected payoff
of a type-(θ, b) buyer when reporting θ, b is equal to

Uθ,b(θ, b) =

Eω1∼µ(ω|θ,b) ET∼µn−1 EMS
[u(ω1, θ, aS(θ, b))− tS(θ, b)] .

Consider this expected payoff conditioning on Sθ,b. Let
U(Sθ,b) be the uniform distribution over Sθ,b. Then

Uθ,b(θ, b|Sθ,b)
= Eω1∼µ(ω|θ,b) E [u(ω1, θ, aS(θ, b))− tS(θ, b) | Sθ,b]
= Eω1∼U(Sθ,b) E [u(ω1, θ, aS(θ, b))− tS(θ, b) | Sθ,b]
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Conditioning on Sθ,b, we should have ω1 ∼ U(Sθ,b) be-
cause ω1 ∈ Sθ,b and the elements in Sθ,b are indepen-
dently drawn from µ(ω|θ, b). Recall that µ̂(ω|θ, b) is
defined to be the uniform distribution over Sθ,b. So
our IC constraints for type-(θ, b) buyer guarantees that
when ω1 is drawn from the uniform distribution over
Sθ,b, it is ε-optimal to truthfully report (θ, b), i.e.,

Uθ,b(θ, b|Sθ,b) ≥ Uθ,b(θ′, b′|Sθ,b)− ε

for all (θ′, b′) 6= (θ, b). Here

Uθ,b(θ
′, b′|Sθ,b)

= Eω1∼U(Sθ,b) E [u(ω1, θ, a
′(aS(θ′, b′)))− tS(θ′, b′)|Sθ,b]

represents the conditional expected utility when report-
ing (θ′, b′) and then taking arbitrary action based on the
recommendation. Take expectation over Sθ,b, we prove
ε-IC.

The proofs for ε-IR and ε-obedience are basically
the same. ε-IR is guaranteed by the IR constraints
for each Sθ,b. ε-obedience is guaranteed by the OB
constraints for each Sθ,b.

D.2 Proof of Theorem 5.1 We first show that the
optimal solution of (4.2) is a feasible solution of (5.3)
with high probability.

Lemma D.1. With probability at least 1 − δ/2, the
optimal solution of (4.2) p∗ is a feasible solution of the
LP (5.3), as long as

n ≥ Θ

(
ln(G/δ) ·max

{
|A|2

ε2 · µmin
,

1

µ2
min

})
= Θ

(
|A|2 · ln(G/δ)

ε2

)
.

where G = max{|Θ|, |B|, |A|} and µmin = minθ,b µ(θ, b).

Proof. Define µmin = minθ,b µ(θ, b). We first show
that with probability at least 1 − δ/4, we collect at
least n·µmin

2 samples for each buyer type θ, b. By the
Chernoff bound, for each θ, b, with probability at least
1− δ/(4|Θ| · |B|),

µ(θ, b)−
∑n
i=1 1{(θi,bi)=(θ,b)}

n ≤
√

ln(4|Θ|·|B|/δ)
2n

=⇒
∑n
i=1 1{(θi,bi)=(θ,b)}

n ≥ µ(θ, b)−
√

ln(4|Θ|·|B|/δ)
2n

=⇒
∑n
i=1 1{(θi,bi)=(θ,b)}

n ≥ µmin −
√

ln(4|Θ|·|B|/δ)
2n

So by the union bound when n ≥ 2 ln(4|Θ|·|B|/δ)
µ2

min
we have∑n

i=1 1{(θi,bi)=(θ,b)}
n ≥ µmin/2 for all θ, b with probability

1− δ/4.

Now assume that we collect at least n·µmin

2 samples

for each buyer type θ, b. Let p∗,◦θ,b(ω, a) be the variables

of the optimal solution of (4.2) p∗, where ◦ ∈ {+,−}.
To prove that p∗ is a feasible solution of (5.3) with
high probability, it suffices to show that with high
probability, we have∣∣∣∣∣∑
ω

(µ̂(ω|θ, b)− µ(ω|θ, b))p∗,◦θ,b (ω, a)(u(ω, θ, a)− t◦)

∣∣∣∣∣ ≤ 1

4|A|

for all θ, θ′, b, b′, a, a′. Now consider the buyer with
type θ and budget b. Let K be the number of samples
with (θi, bi) = (θ, b). Consider fixed θ′, b′, a, a′ and
define h◦ω = p∗,◦θ′,b′(ω, a)(u(ω, θ, a′) − t◦). According
to the Chernoff bound, with probability at least 1 −
δ/(8|Θ|2|B|2|A|2),∣∣∣∑n

i=1 1{(θi,bi)=(θ,b)}h◦ωi
K −

∑
ω µ(ω|θ, b)h◦ω

∣∣∣
≤
√

2 ln(8|Θ|2|B|2|A|2/δ)
K ≤

√
4 ln(8|Θ|2|B|2|A|2/δ)

n·µmin
.

Setting the right hand side= 1
4|A| , we get n ≥

64|A|2·ln(8|Θ|2|B|2|A|2/δ)
ε2·µmin

. And by the union bound, with

probability 1−δ/4 we have the left-hand side ≤ 1
4|A| for

all θ, θ′, b, b′, a, a′, ◦ ∈ {+,−}.
Therefore when n ≥

max

{
64|A|2 · ln(8|Θ|2|B|2|A|2/δ)

ε2 · µmin
,

2 ln(2|Θ| · |B|/δ)
µ2

min

}
= Θ

(
ln(G/δ) ·max

{
|A|2

ε2 · µmin
,

1

µ2
min

})
,

with probability 1−δ/2, p∗ is a feasible solution of (5.3),
where G = max{|Θ|, |B|, |A|}.

Define RevS(M) to be the expected revenue of
M when the underlying distribution is the uniform
distribution over S. Let E be the event that p∗ is a
feasible solution of the LP (5.3). Then the expected
revenue of Mechanism 1 is equal to

ES RevS(MS)

= ES 1(E)RevS(MS) + ES 1(E)RevS(MS)

≥ ES 1(E) RevS(p∗)

+ES 1(E)
(
RevS(p∗) + RevS(MS)− RevS(p∗)

)
= ES RevS(p∗) + ES 1(E)

(
RevS(MS)− RevS(p∗)

)
≥ ES RevS(p∗)− 2 · ES 1(E)

≥ Revµ(p∗)− δ.
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