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Abstract

We propose definitions of substitutes and complements for pieces of information (“signals”)
in the context of a decision or optimization problem, with game-theoretic and algorithmic ap-
plications. In a game-theoretic context, substitutes capture diminishing marginal value of in-
formation to a rational decision maker. We use the definitions to address the question of
how and when information is aggregated in prediction markets. Substitutes characterize “best-
possible” equilibria with immediate information aggregation, while complements characterize
“worst-possible”, delayed aggregation. Game-theoretic applications also include settings such as
crowdsourcing contests and Q&A forums. In an algorithmic context, where substitutes capture
diminishing marginal improvement of information to an optimization problem, substitutes imply
efficient approximation algorithms for a very general class of (adaptive) information acquisition
problems.

In tandem with these broad applications, we examine the structure and design of informa-
tional substitutes and complements. They have equivalent, intuitive definitions from disparate
perspectives: submodularity, geometry, and information theory. We also consider the design of
scoring rules or optimization problems so as to encourage substitutability or complementarity,
with positive and negative results. Taken as a whole, the results give some evidence that, in
parallel with substitutable items, informational substitutes play a natural conceptual and formal
role in game theory and algorithms.



Contents

1 Introduction and Overview 1
1.1 Motivation and challenge . . . . . . . . . ... 1

1.2 This paper: summary and contributions . . . . . . . .. ... ... ... ... 2

1.3 Outline . . . . . . . . e e 4

2 Definitions and Foundations 5
2.1 Setting: information structure and decision problems . . . . . . . ... ... ... .. 5
2.1.1 Model of information and decision problems . . . . . . . .. .. .. ... ... )

2.1.2  Signal lattices . . . . . . . . L 6

2.2 The definitions of substitutes and complements . . . . . . .. ... ... ... ... 8
2.3 Scoring rules and a revelation principle . . . . . .. ... Lo 10
2.4 Characterizations . . . . . . . . ... 13
2.4.1 Generalized entropies . . . . . . ... 14

2.4.2 Bregman divergences . . . . . . . . ..o e e e e 15

3 Game-Theoretic Applications 18
3.1 Prediction markets . . . . .. .. Lo 18
3.1.1 Substitutes and “all-rush” . . . . . . . ... . 19

3.1.2 Complements and “all-delay” . . . . .. .. .. ... ... ... 21

3.2 Other game-theoretic applications . . . . . . . . . . ... ... ... ... 23
3.2.1 Crowdsourcing and contests . . . . . . . . ... ..o oo 23

4 Algorithmic Applications 26
4.1 The SIGNALSELECTION problem . . . . . . .. .. .. ... ... ... .. ..... 26
4.1.1 The oracle model and computing V. . . . . .. .. ... Lo 28

4.1.2 Positive and negative results via reductions . . . . . . ... ... 30

4.1.3 Adaptive SIGNALSELECTION . . . . . .t v v vttt e e e e e 35

5 Structure and Design 37
5.1 Universal substitutes and complements . . . . . .. .. ... ... ... .00, 37
5.2 Identifying complements . . . . . . . ... Lo 39
5.3 Identifying substitutes . . . . . . . . L Lo 40
5.4 Designing to create substitutability . . . . . . . ... . o000 41

6 Discussion, Conclusion, and Future Work 45
6.1 Contributions and discussion . . . . . . . . .. ... .. e 45
6.2 Future work: game theory . . . . . . . . .. L 46
6.3 Future work: algorithms . . . . . .. .. .. L 47
6.4 Future work: structure of S&C . . . . . . ... 47

A Other Related Work 53
A.0.1 Substitutes and complements . . . . .. ... .. ... ... ... 53

A.0.2 Information in markets . . . . . . .. ... ... 54

A.0.3 Other game-theoretic settings. . . . . . . . ... ... ... 55

A.0.4 Algorithms for information acquisition. . . . . . . ... ... ... ...... 56

ii



B Defining S&C: intuition, challenges, and historical context 56

B.0.1 Defining the value of information . . . . . . . . ... .. ... ... ... 57
B.0.2 The approach of Borgersetal. . . . ... ... ... ... ... ........ 57
B.0.3 Our approach: dependence on context and internal structure . . . .. .. .. 58

B.0.4 Capturing “diminishing” marginal value . . . . . . . .. ... ... ... ... 60

iii



1 Introduction and Overview

1.1 Motivation and challenge

An agent living in an uncertain world wishes to make some decision (whether to bring an umbrella
on her commute, how to design her company’s website, ...). She can improve her expected utility
by obtaining pieces of information about the world prior to acting (a weatherman’s forecast or a
barometer reading, market research or automated A/B testing, ...). This naturally leads her to
assign value to different pieces of information and combinations thereof. The value of information
arises as the expected improvement it imparts to her optimization problem.

We would like to generally understand, predict, or design algorithms to guide such agents
in acquiring and using information. Consider the analogous case where the agent has value for
items or goods, represented by a valuation function over subsets of items. A set of items are
substitutes if, intuitively, each’s value decreases given more of the others; they are complements if
it increases. Here, we have rich game-theoretic and algorithmic theories leveraging the structure
of substitutes and complements (S&C). For instance, in many settings, foundational work shows
that substitutability captures positive results for existence of market equilibria, while complements
capture negative results [Kelso Jr and Crawford, 1982, Roth, 1984, Gul and Stacchetti, 1999,
Hatfield and Milgrom, 2005, Ostrovsky, 2008]. When substitutes are captured by submodular
valuation functions [Lehmann et al., 2001], algorithmic results show how to efficiently optimize (or
approximately optimize) subject to constraints imposed by the environment (e.g. Calinescu et al.
[2011]). For example, an agent wishing to select from a set of costly items with a budget constraint
has a (1 — 2)-approximation algorithm if her valuation function is submodular [Sviridenko, 2004].

Can we obtain similar structural and algorithmic results for information? Here, a piece of
information is modeled as a signal or random variable that is correlated in some way with the
state of the world that the agent cares about (whether it will rain, how profitable are different
website designs, ...). Intuitively, one might often expect information to satisfy substitutable or
complementary structure. For instance, a barometer reading and an observation of whether the
sky is cloudy both yield valuable information about whether it will rain to an umbrella-toting
commuter; but these are substitutable observations for our commuter in that each is probably
worth less once one has observed the other. On the other hand, the dew point and the temperature
tend to be complementary observations for our commuter: Rain may be only somewhat correlated
with dew point and only somewhat correlated with temperature, but is highly correlated with cases
where temperature and dew point are close (i.e. the relative humidity is high).

Despite this appealing intuition, there are significant challenges to overcome in defining in-
formational S&C. Pieces of information, unlike items, may have complex probabilistic structure
and relationships. But on the other hand, this structure alone cannot capture the value of that
information, which (again unlike items) seemingly must arise from the context in which it is used.
Next, even given a measure of value, it is unclear how to formalize an intuition such as “dimin-
ishing marginal value”. Finally, it remains to demonstrate that the definitions are tractable and
have game-theoretic and/or algorithmic applications. These challenges seem to have prevented a
successful theory of informational S&C thus far.



1.2 This paper: summary and contributions

This paper has four components.

1. We propose a definition of informational substitutes and complements (S&C). Beginning from
the very general notion of value of information in the context of any specific decision or optimization
problem, we define S&C in terms of diminishing (increasing) marginal value for that problem. This
requires a definition of “marginal unit” of information. We consider a hierarchy of three kinds
of marginal information: learning another signal, learning some deterministic function of another
signal, and learning some randomized function (“garbling”) of another signal. These correspond
respectively to weak, moderate, and strong versions of the definitions, formalized by strengthenings
of submodularity and supermoduarity.

We also investigate some useful tools and equivalent definitons. From an information-theoretic
perspective, substitutes can be defined as signals that reveal a diminishing amount of information
about a particular event, where the measure of information is some generalized entropy function.
From a geometric perspective, substitutes can be defined using a measure of distance, namely some
Bregman divergence, on the space of beliefs about the event; signals are substitutes if the average
change in one’s belief about the event is dimininishing in the amount of information already known.

2. We give game-theoretic applications of these definitions, primarily on information aggregation
in prediction markets. When strategic agents have heterogeneous, valuable information, we would
like to understand when and how their information is revealed and aggregated in an equilibrium
of strategic play. Prediction markets, which are toy models of financial markets, are possibly the
simplest setting capturing the essence of this question. However, although the efficient market
hypothesis states that information is quickly aggregated in financial markets [Fama, 1970], despite
much research on this question in economics (e.g. Kyle [1985], Ostrovsky [2012]) and computer
science (e.g. Chen et al. [2007], Dimitrov and Sami [2008], Gao et al. [2013]), very little was
previously known about how quickly information is aggregated in markets except in very special
cases.

We address the main open question regarding strategic play in prediction markets: When and
how is information aggregated? We show that informational substitutes imply that all equilibria
are of the “best possible” form where information is aggregated immediately, while complements
imply “worst possible” equilibria where aggregation is delayed as long as possible. Furthermore, the
respective converses hold as well; e.g., if an information structure guarantees the “best possible”
equilibria, then it must satisfy substitutes.

Theorem (Informal). In a prediction where trader’s signals are strict, strong substitutes with
respect to the market scoring rule, in all equilibria, traders rush to reveal and aggregate information
immediately. Conversely, if signals are not strong substitutes, then there are arrival orders for
traders where no equilibrium has immediate aggregation.

Theorem (Informal). In a prediction market where trader’s signals are strict, strong complements
with respect to the market scoring rule, in all equilibria, traders delay revealing and aggregating
information as long as possible. Conversely, if signals are not strong complements, then there are
arrival orders where no equilibrium exhibits full delaying.

Informational S&C thus seem as fundamental to equilibria of (informational) markets as sub-
stitutable items are in markets for goods.



We believe that informational S&C have the potential for broad applicability in other game-
theoretic settings involving strategic information revelation, and toward this end, give some ad-
ditional example applications. We show that S&C characterize analogous “rush/delay” equilibria
in some models of machine-learning or crowdsourcing contests [Abernethy and Frongillo, 2011,
Waggoner et al., 2015] and question-and-answer forums [Jain et al., 2009].

3. We give algorithmic applications, focusing on the complexity of approximately-optimal infor-
mation acquisition. Namely, we define a very broad class of problems, termed SIGNALSELECTION,
in which a decision maker wishes to acquire information prior to making a decision, but has con-
straints on the acquisition process. For instance, a company wishes to purchase heterogeneous,
pricey data sets subject to a budget constraint, or to place up to k sensors in an environment. We
show that substitutes imply efficient approximation algorithms in many cases such as a budget con-
straint; this extends to an adaptive version of the problem as well. We also show that the problem
is hard in general and in the complements case, even when signals are independent uniform bits.

Theorem (Informal). For the SIGNALSELECTION problem with e.g. cardinality or budget (“knap-
sack”) constraints, in the oracle model of input: If signals are weak substitutes, then polynomial-
time 1 — 1/e approximation algorithms exist; but in general, or even if signals are assumed to be
complements, no algorithm can achieve nonzero approximation with subexponentially many oracle
queries.

These results offer a unifying perspective on a variety of similar “submodularity-based” solutions
in the literature [Krause and Guestrin, 2005b, Guestrin et al., 2005, Krause and Guestrin, 2009,
Golovin and Krause, 2011].

4.  We investigate the structure of informational S&C. We give a variety of tools and insights
for both identifying substitutable structure and designing for it. For instance, we provide natu-
ral geometric and information-theoretic definitions of S&C and show they are equivalent to the
submodularity-based definitions.

We address two fundamental questions: Are there (nontrivial) signals that are substitutes for
every decision problem? Second, given a set of signals, can we always design a decision problem
for which they are substitutes? In the game-theoretic settings above, this corresponds to design
of mechanisms for immediate aggregation, somewhat of a holy grail for prediction markets. In
algorithmic settings, it has relevance for the design of submodular surrogates [Chen et al., 2015].
Unfortunately, we give quite general negative answers to both questions. Surprisingly, more positive
results arise for complements. We give the geometric intuition behind these results and point toward
heuristics for substitutable design in practice.

In summary, the contributions of this paper are twofold: (a) in the definitions of informational
S&C, along with a body of evidence that they are natural, tractable, and useful; and (b) in the
applications, in which we resolve a major open problem on strategic information revelation as well
as give a unifying and general framework for a broad algorithmic problem. Our results on structure
and design of informational S&C points to potential for these very general definitions and results
to have concrete applications.

Taken all together, we believe these results give evidence that informational S&C, in analogy
with the successful theories of substitutable goods, have a natural and useful role to play in game
theory, algorithms, and in connecting the two.



1.3 Outline

Two sections have been placed in the appendix for convenience. Appendix A gives a detailed
survey of related work in a variety of areas. In Appendix B, we overview and justify our general
approach to defining informational S&C, including historical context, tradeoffs, and intuition. We
particularly focus on a comparison to the proposed definitions of Borgers et al. [2013], which we
build on in this paper.

In Section 2, we concisely and formally define informational S&C. We show that prediction
problems, and the modern convex analysis understanding of them, can be used to analyze general
decision problems. Leveraging these tools, we give three equivalent definitions from seemingly-
disparate perspectives.

In Section 3, we present game-theoretic applications. Primarily, we show that informational
substitutes (complements) characterize best-case (worst-case) information aggregation in prediction
markets.

In Section 4, we present algorithmic applications. We define SIGNALSELECTION, a class of
information acquisition problems, and show that substitutes correspond to efficient approximation
algorithms while there are strong hardness results in general.

In Section 5, we investigate informational S&C themselves with an eye toward the previous
applications. We give some results on general classes of S&C and on the design of prediction or
optimization problems for which a given information structure is substitutable, with both game-
theoretic and algorithmic implications.

Section 6 summarizes and discusses future work.



2 Definitions and Foundations

2.1 Setting: information structure and decision problems

We now formally present the setting and definitions. Motivation for the choices made and relation
to prior work, particularly Borgers et al. [2013], are described in depth in Section B.

2.1.1 Model of information and decision problems

Information structure. We take a standard Bayesian model of probabilistic information.
There is a random event E of interest to the decisionmaker, e.g. E € {rain,no rain}. There are
also n “base signals” Ay, ..., A,, modeled as random events. These represent potential information
obtained by a decision-maker, e.g. A; € {cloudy,sunny}. An information structure is given by E,
A1, ..., Ay, and a prior distribution P on outcomes (e, ay,...,a,). For simplicity, we assume that
all A; and F have a finite set of possible outcomes.

In addition to the base signals, there will be other signals that intuitively represent combinations
of base signals. Formally, there is a set £ of signals, with a generic signal usually denoted A or B.
Any subscripted A; always refers to a base signal, while A may in general be any signal in £. We
will describe how L is generated from A4, ..., A, momentarily, in Section 2.1.2.

We will use lower-case p to refer to probability distributions on E, the event of interest. The
notation p(e) refers to the probability that E = e, while p(a;,e) = Pr[A; = a;, E = €], and so on.
The notation p(e|a;) refers to the probability that E = e conditioned on A; = a;, obtained from
the prior via a Bayesian update: p(ela;) = P(e,a;)/P(a;). We will sometimes use the shorthand
notation p, to refer to the posterior distribution on e conditioned on A = a, similarly for p,; when
A =aand B = b, and so on. We will abuse notation and write E to represent a set of outcomes,
so for instance we may write e € E; similarly for signals. We also sometimes write E, 4 [...] for
the expectation over outcomes a of A.

Decision problems and value function. A single-agent decision problem consists of a set
of event outcomes F, a decision space D, and a utility function v : D x E — R, where u(d, e) is
the utility for taking action d when the event’s outcome is £ = e. This decision problem, in the
context of an information structure, will be how signals derive their value.

Specifically, given the prior P, the decision that maximizes expected utility is arg maxgep Ec u(d, e).
But now suppose a Bayesian, rational agent knows P and will first observe the signal A, then update
to the posterior p, on E, and then choose a decision maximizing expected utility for this posterior
belief. In this case, her utility will be given by the following “value” function:

u, P e —
V@ (A) =E max I([?[u(d,e) |A=a] |. (1)
We will use L to denote a null signal, so that V*“P(L) is the expected utility for deciding based
only on the prior distribution. Where the decision problem and information structure are evident
from context, we will omit the superscripts u, P.

Intuitively, V** is analogous to a valuation function v : 281"} — R over subsets of items.
However, inputs to ¥V may not only represent subsets of A1,..., A,, but also signals that give partial
information about them.



2.1.2 Signal lattices

We will consider three kinds of signal sets £, leading to “weak”, “moderate”, and “strong” substi-
tutes and complements. In each case, the set of signals £ will form a lattice.

Definition 2.1.1. A lattice (U, <) is a set U together with a partial order < on it such that for
all A, B € U, there are a meet A A B and join AV B in U satisfying:

1. ANBXA<AVBand ANB=<B=<AV B;and

2. the meet and join are the “highest” and “lowest” (respectively) elements in the order satisfying
these inequalities.

In a lattice, L denotes the “bottom” element and T the “top” element, i.e. L < A <X T for all
A € U, if they exist.

The following definition illustrates one very common lattice, that of subsets of a ground set.

Definition 2.1.2. The subsets signal lattice generated by Ay, ..., A, consists of an element Ag for
each subset S of {A44,..., A}, where Ag is the signal conveying all realizations {A4; = a; : i € S}.
Its partial order is Ag < Ag if and only if S C S’. Hence, its meet operation is given by set
intersection and join by set union.

The bottom element L of the subsets lattice exists and is a null signal corresponding to the empty
set (we will use this notation somewhat often), while the top element also exists and corresponds
to observing all signals. Also, the partial ordering < denotes less informative. These facts will
continue to hold for the other two signal lattices we define.

For the other two lattices, we utilize the main idea from the classic model of information due
to Aumann [1976]. Let the set I' C Ay x --- x A, consist of all signal realizations (a1, ...,a,) in
the support of the prior distribution. Now, a partition is a collection of subsets of I' such that each
~v € I' is in exactly one subset. Each signal A; corresponds to a partition of I' with one subset for
each outcome a;, namely, the set of realizations v = (--- ,a;,---). Example 2.1.1, given after the
definition of discrete signal lattice, illustrates the partition model.

As in Aumann’s model, the partitions of I" form a lattice, each partition corresponding to a
possible signal. The partial ordering is that A < B if the partition of A is “coarser” than that of B.
One partition is coarser than another (which is finer) if each element of the former is partitioned by
elements of the latter. The join of two partitions is the coarsest common refinement (the coarsest
partition that is finer than each of the two), while the meet is the finest common coarsening.
Example 2.1.2, given after the definition, illustrates coarsenings and refinements.

Definition 2.1.3. The discrete signal lattice generated by A1, ..., A, consists of all signals corre-
sponding to partitions of I', where I' is the subset of Ay x --- x A, with positive probability. Its
partial order has A < B if the partition associated to A is coarser than that of B.

FEzample 2.1.1 (Signals modeled as partitions). (a) We have two independent uniform bits A; and
Ay. In this case I' = {(0,0),(0,1),(1,0),(1,1)}. Here A; is modeled as the partition consisting
of two elements: {(0,0),(0,1)} and {(1,0), (1,1)}. The first element of the partition is the set of
realizations where A; = 0, while the second is the set of realizations where A; = 1.



(b) Now modify the example so that A; and Ay are perfectly correlated: with probability 0.5,
A1 = Az =0, and with probability 0.5, A; = Ay = 1. Here, I' = {(0,0), (1,1)} and A; corresponds
to the partition consisting of {(0,0)} and {(1,1)}.

(c) Now revisit the first case where A; and As are independent. Imagine an agent who observes
both base signals and wishes to reveal only the XOR, A; @ Az of the bits. This new signal released
by the agent, call it A, may also be modeled as a partition of I', where the elements of the partition
are {(0,0),(1,1)} and {(0,1),(1,0)}.

Ezample 2.1.2 (The order given by coarsenings). (a) We have a single signal A; which is distributed
uniformly on {1,2,3,4,5,6}. ThenT" = {1,2,3,4,5,6} and A;’s partition contains these six subsets:
{1},{2}, {3}, {4}, {5}, {6}.

(b) Given the above information structure, suppose that an agent holding A; will commit to
releasing some deterministic function of A;. In terms of information revealed, the agent may map
each realization a; € {1,...,6} to a different report — this is the same as just revealing a; — or
she may map some realizations to the same report. Suppose that she reports “small” whenever
a; € {1,2,3} and reports “large” whenever a; € {4,5,6}. The information revealed by this report
is captured by a binary signal A corresponding to the partition with two elements: {1,2,3} and
{4,5,6}. The partition of A is coarser than that of A, so A < A; on the discrete lattice.

(c) Given the same information structure, imagine that the agent will commit to releasing
“even” whenever a1 € {2,4,6} and “odd” whenever a; € {1,3,5}. This corresponds to a signal B
whose partition has these two elements and is again coarser than that of A;.

(d) Consider the above two signals A and B. They are incomparable: Neither is coarser nor
finer than the other. The meet A A B will be the null signal' L, intuitively because given A, one
cannot guarantee anything about the outcome of B. The join A V B intuitively corresponds to
observing both signals. Let C = A VvV B. The partition corresponding to C' has the following four
elements: {1,3}, {2}, {4,6}, {5}. These each correspond to a realization of the signal C'; call the
realizations respectively c1, co, c3,c4. Here, when for example A = “small” and B = “even”, then
C = ¢9 and an observer of C would know that A; = 2. When A = “large” and B = “even”,
then C' = c3 and an observer of C' would know that A; € {4,6}, updating to a posterior on these
possibilities.

For the third and strongest notion, we extend the model by, intuitively, appending randomness
to the signals on the discrete lattice. Given any signal A on the discrete lattice, a “garbling” of
A can be captured by a randomized function of A; but this may be modeled as a deterministic
function s(A, r) where 7 is a uniform [0, 1] random variable?. This observation allows us to “reduce”
to the deterministic case, but where each possible signal carries extra information in the form of
some independent randomness.

Specifically, let " be defined as above (the subset of A; x --- x A, with positive probability)
and, for each partition IT of T, let Ry € [0, 1] drawn independently from the uniform distribution.
Let I" =T x R where R = X1 Ryp. Now, we proceed as before, but using I"".?

!Formally, this is the signal whose partition contains a single element: all of T.

2In some applications, it may be more desirable to use an infinite string of independent uniform bits.

3To be precise, we should restrict to measurable subsets using the Lebesgue measure on [0,1]. We will omit this
discussion for simplicity; if concerned, the reader may alternatively assume that each Rp is drawn uniformly from a
massive but finite set, with some tiny e approximation carried through our results.



Definition 2.1.4. The continuous signal lattice consists of a signal corresponding to each partition
of I'V. Its partial order has A < B if the partition associated to A is coarser than that of B.

Ezample 2.1.3 (Modeling garblings via the continuous lattice). Consider a uniformly random bit A;
as the only base signal; the resulting I' is {0,1}. Now consider the garbling where, if A; = 0, then
output “happy” with probability ¢y and “sad” otherwise; if it equals 1, then output “happy” with
probability g1 and “sad” otherwise. Call the output of the garbling A. Then A can be modeled as
a partition of I' x [0, 1] with the following two subsets: {(0,z):0 <z < g}U{(l,z):0<z<q},
and {(0,z) : g0 < x <1} U{(1,z): q1 <z < 1}. Here the first realization of A corresponds to the
output “happy”, while the second corresponds to output “sad”. To see this, note for instance that
the first realization contains all the elements of I x [0, 1] where A; = 0 and the randomness variable
x < go. So when A; = 0, assuming z is drawn uniformly and independently from [0, 1], then the
outcome of A is “happy” with probability qy. On the continuous lattice, A1 corresponds to the
partition of singletons such as {(0,0.35142)}, {(1,0.92241)}, and so on. That is, it corresponds to
observing both the original binary bit as well as the random real number x. Because this partition
is finer than that corresponding to A, we have A < A; on the continuous lattice.

The use of “happy” and “sad” for the outputs in the above example illustrates that it is not
important, when considering the information conveyed by signal A, to consider what its realizations
were named. All that matters is their distributions, e.g. the partitions they represent.

Ezample 2.1.4 (Modeling garblings, continued). Again let A; be a uniformly random bit, and now
suppose A is obtained by adding to A; independent Gaussian noise with mean 0 and variance
1. In this case, intuitively, each outcome of A (say A = 0.3) represents two possibilities (such as
A1 = 0 and the Gaussian is 0.3, or A; = 1 and the Gaussian is —0.7). A can be modeled as a
partition of I' x [0, 1] where = € [0, 1] is interpreted as the quantile of the outcome of the Gaussian.
Each member of the partition has two elements. These can be written (0,z9) and (1,z1) with
xo = P(A) and 1 = P(A—1), using the standard normal CDF ®. Given the realization A = 0, the
posterior distribution on A; is given by a Bayesian update depending on the probability density of
the Gaussian at 0 and at —1.

2.2 The definitions of substitutes and complements

We utilize a common notion of diminishing and increasing marginal value. For example, the idea
of submodularity is that a lattice element B’s marginal contribution to A should be smaller that
to some A’ < A.

Definition 2.2.1. A function f from a lattice to the reals is submodular if it exhibits diminishing
marginal value: For all A’, A, B on the lattice with AN B < A’ < A,

f(BVvA) = fA) = f(BVA) - f(A).

It is supermodular if it exhibits increasing marginal value: For all A, A’, B on the lattice with
AN B =< A" <X A, the above inequality is reversed. The sub- or super-modularity is strict if,
whenever A and B are incomparable on the lattice’s ordering and A’ # A, the inequality is strict.

Definition 2.2.2 (Weak Informational S&C). In the context of a decision problem u and prior
P, the signals A1, ..., A, are weak substitutes if V' is submodular on the subsets signal lattice
generated by Ai,...,A,. They are weak complements if V*“P is supermodular on their subsets



signal lattice. The signals are strict substitutes (complements) if the V*P is strictly submodular
(supermodular).

For moderate and strong substitutes, we will use a strengthening of submodularity by requiring
diminishing marginal value with respect to, respectively, all deterministic and randomized functions
of a signal.*

Definition 2.2.3 (Moderate and Strong Informational S&C). In the context of a decision problem
u and prior P, the signals Aq,..., A, are moderate (respectively, strong) substitutes if, for all A, B
on the subsets signal lattice, and for all A’ on the discrete (respectively, continuous) signal lattice
with AANB < A" < A,

vel(Bv Ay —yeP(A) > vl (B v A) — v (A).

They are moderate (strong) complements if, for all A, B on the subsets signal lattice and all A’ on
their discrete (continuous) signal lattice with A A B < A’ < A, the above inequality is reversed.

The signals are strict substitutes (complements) if whenever A and B are incomparable and
A’ # A, the respective inequality is strict.

Verbally, S&C capture that the more pieces of information one has, the less valuable (respec-
tively, more valuable) B becomes. The levels of weak, moderate, and strong capture the senses in
which “pieces of information” is interpreted. Weak substitutes satisfy diminishing marginal value
whenever a whole signal is added to a subset of signals. However, they do not give guarantees
about marginal value with respect to partial information about signals. Moderate and strong sub-
stitutes respectively satisfy diminishing marginal value when deterministic (randomized) partial
information about a signal is revealed.

Observation 2.2.1. Strong substitutes imply moderate substitutes, which imply weak substitutes.
The same holds for complements.

Proof. The respective lattices are supersets, i.e. the continuous signal lattice is a superset of the
discrete lattice which is a superset of the subsets lattice, and the partial orderings agree. So each
substitutes definition requires V¥ to satisfy a set of inequalities at various points, and in going
from weak to moderate to strong substitutes, we simply increase the set of required inequalities
that signals must satisfy. O

Ezample 2.2.1 (Substitutes). The event E is a uniformly random bit and the two signals A} = E
and As = E. That is, both signals are always equal to E. The decision problem is to predict the
outcome of E by deciding either 0 or 1, with a payoff of 1 for correctness and 0 otherwise. In this
case, one can immediately see that Ay and As are e.g. weak substitutes, as a second signal never
gives marginal benefit over the first.

Ezample 2.2.2 (Complements). The event E and decision problem are the same as in Example
2.2.1, but this time A; and As are uniformly random bits with £ = A; @ As, the XOR of A; and
As. In this case, A; and As are immediately seen to be e.g. weak complements, as a first signal
never gives marginal benefit over the prior.

4Previous versions of this paper used submodularity on the discrete and continuous signal lattices, which is a more
restrictive definition. We only need this weaker definition for results in this paper, but in general both are interesting
and the right choice may be context-dependent; or there could be other interesting variations.



Ezample 2.2.3 (Weak vs moderate). Here is an example of weak substitutes that are not moderate
substitutes. Intuitively, we will pair the previous two examples. The event E consists of a pair
(Ey, E.) of independent uniformly random bits. The decision problem is to predict both components
of E, getting one point for each correct answer. Let the random variable By = Ej and By = Ej,.
Let the random variables C; and C5 be uniformly random bits such that E. = Cy & Cs.

Now, consider the signals A; = (B1,C1) and Ay = (B, C9). Intuitively, the first component
of each signal completely determines Fjp, while the second component gives no information about
E. until combined with the other signal. Hence these signals intuitively have both substitutable
and complementary internal structure. Consider the subsets lattice {0, {A1}, {42}, {A1, A2}}. If
we modify the decision problem such that predicting the first component of E is worth 1+ € points,
then these signals are weak substitutes: Each alone is worth 1 + € points, while together they are
worth 2 + € points. On the other hand, if we modify the decision problem such that the second
component of F is worth 1 + € points, then these signals become weak complements for analogous
reasons.

On the other hand, these signals are neither moderate substitutes nor moderate complements.
One way to see this is to consider “coarsening” A; into the signal Bj; this has diminishing marginal
value when added to A;. However, we could also coarsen A; into the signal C4, which has increasing
marginal value when added to As.

2.3 Scoring rules and a revelation principle

We now introduce proper scoring rules and prove a useful “revelation principle”.

A scoring rule for an event F is a function S : Agp x E — R, so that S(§, e) is the score assigned
to a prediction (probability distribution) ¢ when the true outcome realized is E = e. Define the
useful notation S(§;q) = Eevq S(4,€) for the expected score under true belief ¢ for reporting § to
the scoring rule.

The scoring rule is (strictly) proper if for all E,q, setting ¢ = ¢ (uniquely) maximizes the
expected score S(§; q). In other words, if ' is distributed according to ¢, then truthfully reporting
q to the scoring rule (uniquely) maximizes expected score.

A fundamental characterization of scoring rules is as follows:

Fact 2.3.1 (McCarthy [1956], Savage [1971], Gneiting and Raftery [2007]). For every (strictly)
proper scoring rule S, there exists a (strictly) convex function G : Ap — R with (1) G(q) = S(q;q)
and (2)

S(q.e) = G(q) + (G'(d), 0c — )
where G'(q) is a subgradient of G at § and d. is the probability distribution on E putting probability
1 on e and O elsewhere.

Furthermore, for every (strictly) convex function G : A — R, there exists a (strictly) proper
scoring rule S such that (1) and (2) hold.

Proof. Given any (strictly) convex G, we first check that the induced S is (strictly) proper. Select
a subgradient G'(p) at each point p. The expected score for reporting ¢ when FE is distributed
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according to q is

< G(q) by convexity of G

= S(a:9)-
Note that the inequality follows simply because, for any convex G, if we take the linear approxi-
mation at some point § and evaluate it at a different point g, this lies below G(q). Furthermore, if
G is strictly convex, then this inequality is strict, implying strict properness.

Now, given a (strictly) proper S, we show that it has the stated form. Define G(q) = S(q; q).
Note that S(G;q) = Ee~q S(§,€) is a linear function of ¢. By properness, each G(q) = S(q;q) =
maxg S(d;q). Since G(q) is a pointwise maximum over a set of linear functions of ¢, G is convex.
If S was strictly proper, then G(gq) was the unique maximum at every point, implying that G is
strictly convex.

Now we claim that S(g;-) is a subtangent of G at ¢: it is linear, equal to G at ¢, and everywhere
below G by definition of G. So in particular S(q,e) = S(g;d.) = G(q) +(G'(4),0e — q), as promised.

O

G(q) = S(q:9)

G(§) = S(3:9)

e -

= e
—
e
=)

=)

<

< —
—_

Figure 1: Illustration of the connection between a scoring rule S and G, its associated
convex expected score function, for a binary event F (Fact 2.3.1). The z-axis is the
probability that £ = 1. S(g,e) is the score obtained for predicting ¢ when E = e, while
S(q; q) is the expected score for predicting ¢ when the believed distribution over E is q.
By the characterization, S(q;q) = G(q) + (G'(4),q — G), which is pictured by taking the
linear approximation to G at ¢ and evaluating it at q. Convexity of G implies that this
linear approximation is always below G, hence reporting truthfully is optimal. We return
to this picture when discussing the relationship to Bregman divergences.

Ezample 2.3.1. The log scoring rule is S(p,e) = logp(e), i.e. the logarithm (usually base 2) of the
probability assigned to the realized event. The expected score function is )_, p(e) log p(e) = —H (p),
where H is the Shannon entropy function.
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Notice that a scoring rule is a special case of a decision problem: The utility function is the
scoring rule S, F is the event picked by nature, and the decision space D = Ag. We now show
that in a sense, scoring rules capture all decision problems. This is not surprising or difficult, and
may have been observed prior to this work; but we formalize it because it captures a very nice and
useful intuition.

Theorem 2.3.1 (Revelation principle). For any decision problem u, there exists a proper scoring
rule S : Ag X E — R that is equivalent to the original decision problem in that for all information
structures P and signals A, VST (A) = V&P (A).

Proof. The idea of the proof, as suggested by the name, is simply for the agent to report her belief
q about F to the scoring rule and for the scoring rule to simulate the optimal decision for this
belief, paying the agent according to the utility derived from that decision. For a given distribution
(“belief”) ¢ on E, let dy be the optimal decision, i.e. d; = argmaxgep Eevq u(d,e). Now, given
u, D, E, let

S(g,e) = u(dg, e).

First let us show properness, i.e. S(§;q) < S(q;q). We have
q)

S(éq) = E ()
= e]EqU,( 2, e)
< EIEqU(dZ, e)
= E Sa.e)
= S(q;9)

using the definition of dj.
Now let us check equivalence to the original problem. Let ¢, be the distribution on E conditioned
on A = a. We have
VUP(A) = Emax E u(d,e)
a deD e~qa
=E E u(d,,e)

a e~qa

=E E S(qq,¢)

a e~qa

=Emax E S(g,e) by properness
a § e~qa

=V5P(4).
O

This reduction is not necessarily computationally efficient, because the input § to the scoring
rule is a probability distribution over £ which may have a large number of outcomes. We note two
positives, however. First, the reduction does not necessarily need to be computationally efficient
to be useful for proofs and analysis. Second, in any case where it seems reasonable to assume that
the agent can solve her decision problem, which involves an expectation over possible outcomes of
E, it seems reasonable to suppose that she can efficiently represent or query her beliefs. In this
case we may often expect a computationally efficient reduction and construction of S. This is a
direction for future work.
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The revelation principle (Theorem 2.3.1) and scoring rule characterization (Fact 2.3.1) together
imply the following extremely useful fact about general decision problems. We do not claim origi-
nality for it; the idea can be found in Savage [1971] and similar ideas or statements are present in
e.g. Frongillo and Kash [2014] and Babaioff et al. [2012]. But it is worth emphasizing because we
will put it to extensive use in this paper.

Corollary 2.3.1. For any decision problem u there exists a corresponding convex function G :
Agp — R, and for every such G there exists a decision problem u, such that G(q) is the expected
utility for acting optimally when the agent’s posterior belief on E is q.

Hence for instance V(A) = Eq G(pa), where pg is the posterior on E given A = a.

As an example of usefulness, we provide a concise proof of the following classic theorem.

Fact 2.3.2 (More information always helps). In any decision problem, for any signals A, B, V(A V
B) > V(A). In other words, more information always improves the expected utility of a decision
problem. In other words, V is a monotone increasing function on the signal lattices.

Proof. Recall that we are using the notation p,, for the distribution on E conditioned on A; = ay,
and so on. In particular, p,, is a vector, i.e. p,, = (p(e1|A1 = aq),...). By the revelation principle,
for some convex G we have V(A;) = E,, G(pq, ), and

V(A1vA) =E [ZP(@al)G(Palaz)]

>EG < E p(ag\al)pm@) by Jensen’s inequality
al
az

= zIin G(pa1)

To obtain the last equality: Each term in the sum consists of the scalar p(az|a;) multiplied by
the vector pg,q,, and for each coordinate e of the vector, we have p(as|ai)p(e|ai, as) = p(e, az|ar).

Then Y, p(e, azla1) = p(elar). O

2.4 Characterizations

In this section, we show how the substitutes and complements conditions can be phrased using the
convexity connection just derived. We will leverage this structure to identify characterizations or
alternative definitions of substitutes and complements. For brevity, we will focus on substitutes,
but in all cases the extension to complements is immediate.

From Corollary 2.3.1, we also get immediately the following characterization:

Definition 2.4.1 (Substitutes via convex functions). For any decision problem, letting G be the
associated expected score function, signals are respectively (weak, moderate, strong) substitutes for
that decision problem if and only if, for all A, B on the subsets lattice and all A’ on the respectively
(subsets, discrete, continuous) lattice with AN B < A" < A,

E G(pa) — EGlpar) = E Glpa) — EG(pa).

13



To be clear, our use of parentheses here means that we are giving three definitions: one for weak
substitutes, where the condition must hold for all A’ on the subsets lattice; and analogously for
moderate substitutes with the discrete lattice and strong substitutes with the continuous lattice.

We view Definition 2.4.1 mostly as a tool, although it may convey some intuition on its own as
well. Definition 2.4.1 will be pictured in Figure 3 along with the final characterization.

2.4.1 Generalized entropies

Here, we seek an alternative interpretation of the definitions of S&C in terms of information and
uncertainty. To this end, for any decision problem, consider the convex expected score function G
and define h = —G. Then h is concave, and we interpret h as a generalized entropy or measure
of information. The justification for this is as follows: Define the notation h(E|A) = E4wa h(pa),
where p, is the distribution on E conditioned on A = a. Then concavity of h implies via Jensen’s
inequality that for all F, A, we have h(E) > h(F|A). In other words, more information always
decreases uncertainty /entropy.

We propose that this is the critical axiom a generalized entropy must satisfy: If more information
always decreases h, then in a sense it measures uncertainty, while if more information sometimes
increases h, then it should not be considered a measure of uncertainty. However, admittedly, the
appeal of this definition may increase by adding additional axioms as are common in the literature,
such as maximization at the uniform distribution and value zero at degenerate distributions. An-
other very intriguing axiom would be a relaxation of the “chain rule” in either direction: h(E|A)
is restricted to be either greater than or less than h(E, A) — h(A). (Note that the chain rule itself,
h(E|A) = h(E,A) — h(A), along with concavity, uniquely characterizes Shannon entropy.) Such
axioms may have interesting consequences for informational S&C. Examining the structure of S&C
under such axioms represents an intriguing direction for future work.

p() p pl
| |

I
0 Pr{E=1|4=0] Pr{E=1] Pr[E=1| A=1] 1

Figure 2: Illustration of marginal improvement of signal A over the prior, V(A) — V(L1),
via the generalized entropy definition used to characterize S&C in Definition 2.4.2. Here,
the generalized entropy function h captures a measure of uncertainty in a distribution
over the binary event E. The marginal value of A is V(A) — V(L) = h(E) — h(E | A), the
expected amount of information revealed about E by A (illustrated by the curly brace).
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Under this interpretation, Definition 2.4.1 can be restated:

Definition 2.4.2 (Substitutes via generalized entropies). For any decision problem u, let the
generalized entropy function h = —G where G is the corresponding expected score function. Signals
are (weak, moderate, strong) substitutes for u if and only if, for all A, B on the subsets lattice and
all A’ on the (subsets, discrete, continuous) lattice with AN B < A’ < A,

h(E|A') = h(E|A' v B) > h(E|A) — h(E|AV B).

Intuitively, Definition 2.4.2 says this: Consider the expected amount of information about E
that is revealed upon learning B, given that some information will already be known. Use the
generalized entropy h to measure this information gain. Then substitutes imply that, the more
information one has, the less information B reveals. On the other hand, complements imply that,
the more information one has, the more information B reveals.

Ezxample 2.4.1. Revisiting Example 2.2.1, where E was a uniform bit and A; = Ay = E, imagine
predicting E against the log scoring rule. Our previous observations imply that here the generalized
entropy function is Shannon entropy H(q) = Y. q(e) log ﬁ. We have H(p) = 1 and H(E|A;) =
H(E|Ag) = H(E|A1, As) = 0, which already shows that A; and Ay are weak substitutes.

If we instead revisit Example 2.2.2, where Ay ® Ay = E with Ay, Ao uniformly random bits, and
again consider predicting E according to the log scoring rule, then we see that H(E) = H(E|A;) =

H(E|As) =1, while H(E|A;, A2) = 0, already proving that A; and Ay are weak complements.

2.4.2 Bregman divergences

Given a convex function G, the Bregman divergence of G is defined as

Dq(p,q) = G(p) — (G(q) + (G'(9),p — a)) -

In other words, it is the difference between G(p) and the linear approximation of G at ¢, evaluated
at p. (See Figure 3.) Another interpretation is to consider the proper scoring rule S associated
with G, by Fact 2.3.1, and note that Dg(p,q) = S(p;p) — S(q;p), the difference in expected score
when reporting one’s true belief p versus lying and reporting ¢. The defining property of a convex
function is that this quantity is always nonnegative. This can be observed geometrically in Figure
1 as well; there Dg(q, ) = G(q) — S(4; q)-

This notion is useful to us because, it turns out, all marginal values of information can be
exactly characterized as Bregman divergences between beliefs.

Lemma 2.4.1. In a decision problem, for any signals A, B, the marginal value of B given A is

V(A v B) - V(A) = iEbDG(pabapa)

where G is the associated expected score function and pyy, is the distribution of E given A = a, B = b.
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Proof.
V(A v B) - V(A) = cILEbG(pab) - ]gG(pa)

- Eb(G(pab) —G(pa))
- gb (D(;(pab,pa) - <G/(pa>vpab - pa>)

= E D (pab-pa) + E(G'(pa), > p(b]a) (pab — pa)
’ b

=K DG(pabapa)
a,b

because >, p(ela, b)p(bla) = p(e|a), so >, p(bla)pap = Pa- O

P,
I

P
| f
0 Pr[E=1| 4=0] Pr{E=1] Pr{E=1|4=1] !

Figure 3: Tllustration of marginal improvement of signal A over the prior, V(A)—V(L1), via
two equivalent definitions used to characterize S&C. Definition 2.4.1 is that V(A)—-V(L1) =
Eq. G(pa) — G(p). Here, the blue curly brace measures the distance between E, G(p,) and
G(p). Definition 2.4.3 is that V(A)—V(L1) = E, DG (pa, p) where Dg(pq, p) is the Bregman
divergence. The Bregman divergences Dg(po,p) and Dg(p1,p) are measured by the two
red curly braces. Another way of stating the equivalence of (1) and (2) is that the average
size of the red braces is equal to the size of the blue brace (where the average is weighted
by the probabilities of A =0,1).

Definition 2.4.3 (Substitutes via divergences). For any decision problem u, let D¢ be the Bregman
divergence of the corresponding expected score function G. Signals are (weak, moderate, strong)
substitutes if and only if, for all A, B on the subsets lattice and all A" on the (subsets, discrete,
continuous) lattice with AN B < A" < A,

E DG(pa/bypa’) > E DG(pabapa)-
a’,b a’b

This can be interpreted as a characterization of S&C where D¢ serves as a distance measure of
sorts (although it is not in general a distance metric). The characterization says that, if we look at
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how “far” the agent’s beliefs move upon learning B, on average, then for substitutes this distance
is decreasing in how much other information is available to the agent. But for complements, the
more information the agent already has, the farther she expects her beliefs to move on average
upon learning B.

Ezample 2.4.2. For the log scoring rule, Dg(p, q) is exactly the KL-divergence or relative entropy
K L(p,q) between distributions on p and ¢. If we recall Example 2.2.1, in which E was a random
bit and A; = Ay = E, we can consider the decision problem of prediction E against the log scoring
rule. In this case, the prior p = (%, %), while the posteriors pg,—0 = (1,0), pa;=1 = (0,1), and the
same for As. Hence E,, KL(ps,,p) = 1. But the posteriors conditioned on both signals are the
same, €.g. Pag—as=0 = (1,0) = pay—0. Hence Eq, 4, K L(pa, assPa;) = 0.

This already shows that A; and Ay are weak substitutes. And in fact, if A; = Ay, then this
argument extends to show that A; and As are substitutes in any decision problem (as they should
be), because given Aj, an update on Ay moves the posterior belief a distance 0.
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3 Game-Theoretic Applications

3.1 Prediction markets

A prediction market is modeled as a Bayesian extensive-form game. The market’s setting is specified
by a strictly proper scoring rule S and an information structure with prior P and event F, and set
of signals Aj,..., A,,. We assume these signals are “nontrivial” in that, given all signals but A;,
the distribution of E changes conditioned on A;.

An instantiation of the market is specified by a set of n traders, each trader i observing some
subset of the signals (call the resulting signal B;), and an order of trading i1, ..., ip, where at each
time step ¢t = 1,..., 7, it is the turn of agent i; € {1,...,n} to trade. We assume that no trader
participates twice in a row (if they do, it is without loss to delete one of these trading opportunities).

The market proceeds as follows. First, each trader ¢ simultaneously and privately observes B;,
updating to a posterior belief. Then the market sets the initial prediction p(® € Ag, which we
assume to be the prior distribution p on E. We will also refer to a market prediction as the market
prices. Then, for each t = 1,...,T, trader i, arrives, observes the current market prediction p=b,
and may update it to (“report”) any p®) € Ag.

After the last trade step T', the true outcome e of E is observed and each trader i receives payoff
D timi, S(p®,e) — S(p*~1), e). Thus, at each time ¢, trader i; is paid according to the scoring rule
applied to p®), but must pay the previous trader according to the scoring rule applied to pt=1),
The total payment made by market “telescopes” into S (p(T), e)— S (p(o), e).

At any given time step ¢, trader ; is said to be reporting truthfully if she moves the market
prediction to her current posterior belief on E. In other words, she makes the myopically optimal
trade.

The natural solution concept for Bayesian games is that they be in Bayes-Nash equilibrium,
where for every player, her (randomized) strategy — specifying how to trade at each time step as
a function of her signal and all past history of play — maximizes expected utility given the prior
and others’ strategies.

Because this is a broad class of equilibria and can in general include undesirable equilibria
involving “non-credible threats”, it is often of interest in extensive-form games to consider the
refinement of perfect Bayesian equilibrium. Here, at each time step and for each past history,
a player’s strategy is required to maximize expected utility given her beliefs at that time and
the strategies of the other players. (Note the difference to Bayes-Nash equilibrium in which this
optimality is only required a priori rather than for every time step.) Here, at any time step and
history of play, players’ beliefs are required to be consistent with Bayesian updating wherever
possible. (It may be that one player deviates to an action not in the support of her strategy; in
this case other players may have arbitrary beliefs about the deviator’s signal.)

To be clear, every perfect Bayesian equilibrium is also a Bayes-Nash equilibrium. Hence, we
note that an existence result is strongest if it guarantees existence of perfect Bayesian equilibrium.
Meanwhile, a uniqueness or nonexistence result is strongest if it refers to Bayes-Nash equilibrium.

Distinguishability criterion. For most of our results, we will need a condition on signals
equivalent or similar to those used in prior works [Chen et al., 2010, Ostrovsky, 2012, Gao et al.,
2013] in order to ensure that traders can correctly interpret others’ reports. Formally, we say that
signals are distinguishable if for all subsets S C {1,..., m} and realizations {a; : i € S}, {a} : i € S}
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of the signals {4; : ¢ € S} such that, for some i € S, a; # a},
Prle|a;:i € S] #Prle|a,:i€S].

We believe it may be possible to relax this criterion and/or interpret such criteria within the S&C
framework, and this is a direction for future work.

Our notation in prediction markets. Note that, for the proper scoring rule S with associated
convex (i, along with the prior P, we have the associated “signal value” function V:

V(A) = E 5(pa;e) = EG(pa)-

In other words, V(A) is the expected score for reporting the posterior distribution conditioned on
the realization of A.

A second key point is that, to a trader whose current information is captured by a signal A,
the set of strategies available to that trader can be captured by the space of signals A’ < A on the
continuous lattice. This follows because any strategy is a randomized function of her information,
so the outcomes of the strategy can be labeled as outcomes of a signal A’.

3.1.1 Substitutes and “all-rush”

We now formally define an “all-rush” equilibrium and show that it corresponds to informational
substitutes. The naive definition would be that each trader reports truthfully at their first op-
portunity, or (hence) at every opportunity. This turns out to be correct except for one subtlety.
Consider, for example, the final trader to enter the market. Because all others have already revealed
all information, this last trader will be indifferent between revealing immediately or delaying. Sim-
ilarly, consider three traders i, j, k and the order of trading ¢, j, 7, j, k. If trader ¢ truthfully reports
at time 1, then trader j is not strictly incentivized to report truthfully at time 2. She could also
delay information revelation until time 4.

Definition 3.1.1. An all-rush strategy profile in a prediction market is one where, if the traders
are numbered 1,2, ... in order of the first trading opportunity, then each trader ¢ reports truthfully
at some time prior to i + 1’s first trading opportunity (with the final trader reporting truthfully
prior to the close of the market).

Before presenting the main theorem of this section, we give the following useful lemma, (which
is quite well known):

Lemma 3.1.1. In every Bayes-Nash equilibrium, every trader reports truthfully at her final trading
opportunity.

Proof. Consider a time t at which trader i = i; makes her final trade. Fix all strategies and any
history of trades until time ¢; then 4’s total expected payoff from all previous time steps is fixed as
well and cannot be changed by any subsequent activity. Meanwhile, ¢’s unique utility-maximizing
action at time t is to report truthfully, by the strict properness of the scoring rule. If ¢ does not
take this action, then her entire strategy is not a best response: She could take the same strategy
until time ¢ and modify this last report to obtain higher expected utility. Therefore, in Bayes-Nash
equilibrium, ¢ reports her posterior on her final trading opportunity. ]
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Theorem 3.1.1. If signals are distinguishable and are strict, strong substitutes, then for every set
of traders and trading orders, every Bayes-Nash equilibrium is all-rush.

Proof. Let the traders be numbered in order of their first trading opportunity 1,2,...,n and let
B; be the signal of trader i. Before diving in, we develop a key idea. In equilibrium, we can
view the market prediction p() at time t as a random variable. Then, construct a “signal” C'®)
capturing the information contained in p®. This can be pictured as the information conveyed by
p® to an “outside observer” who knows the prior distribution and the strategy profile, but does
not have any private information. Furthermore, if traders 1,..., k have participated thus far, then
C® is an element of the continuous signal lattice with CY) < By v ... v By, because p® is a
well-defined, possibly-randomized function of By V --- V Bi. Finally, if all participating traders
have been truthful, then C'!) is a member of the subsets signal lattice £, as it exactly reveals the
subset of the signals held by those traders.

Now, let ¢7 be 4’s final trading opportunity prior to ¢ 4 1’s first trading opportunity. We prove
by backward induction on ¢ that, in BNE and for any participant ¢ participating at some time
t > t;, the following holds: if C!) is an element of the subsets lattice £, then 4 reports truthfully
at t. Now, suppose we have successfully proven this claim by backward induction; let us finish the
proof. The claim implies that C® really is in £ and i really is truthful at all such time steps for the
following reason: C') is the null signal and is an element of £, so trader 1 participates truthfully,
which implies that C(*2) € £, which implies that 2 participates truthfully, and so on. So in any
BNE, all participants play all-rush strategies.

Now let us prove the statement. For the base case t = T, the trader participating at the final
time step is truthful by Lemma 3.1.1.

Now for the inductive step, consider any ¢ = t; for some ¢. If ¢ is ¢’s final trading opportunity,
then by Lemma 3.1.1, in BNE ¢ reports truthfully at ¢. If ¢ < ¢}, then there is nothing to prove.

Otherwise, let ¢’ be i’s next trading opportunity after ¢. By inductive hypothesis, i is truthful
at time ¢’ and thereafter. We compute i’s expected utility for any strategy, and show that if 7 is not
truthful at ¢, she can improve by deviating to the following strategy: Copy the previous strategy
up until ¢, report truthfully at ¢, and make no subsequent updates.

At ', i’s strategy can be described as reporting truthfully according to C*) = ¢*'~1 v B;.
For this trade, 7 obtains expected profit V(C(t/)) - V(C(tlfl)), and 7 obtains no subsequent profit
once her information is revealed. Meanwhile, consider i’s strategy at time ¢, which induces some
signal C®) < B; v (=1 For this trade, i obtains expected profit at most V(C®)) — E G(p—1).
This follows because a trade conveying signal C*) obtains at most V(C(t)).5

Let U be i’s total expected utility at time ¢ and greater. Once 7 reports truthfully at ¢/, she
expects to make no further profit in equilibrium. So

U<v(C) —EG () +v (Y B) - v (e,

Now suppose C*'~1) is in £ and i is not reporting truthfully at ¢. This implies that B; £ C*'~1.
By strong, strict substitutes, B; gives higher marginal benefit to C® than to C*'~1:

Ve D v B — () < v(e® v By) — v(C®).

5 Although we don’t explicitly use it here, this implies that in equilibrium, every p(t) = p.(+), that is, the price at
time t equals the posterior distribution on E conditioned on all information that has been revealed so far, including
at time ¢.
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So
U< V(€D v B)—EG@pE).

But i can achieve this by deviating to being truthful at time ¢, then not participating at any
subsequent times. (This follows because if i is truthful at time ¢, she reveals the signal ct=1 v B,
which is exactly the same as C() v B;.) This deviation does not affect ¢’s utility from any previous
times, so it is a strategy with higher total expected utility. So i’s only BNE strategy can be to be
truthful at ¢. O

Theorem 3.1.2. If signals are distinguishable and are not strong substitutes, then there is a trading
order such that no perfect Bayesian equilibrium is all-rush.

Proof. The assumptions imply that there signals on the subsets lattice A, B and some A’ on the
continuous lattice with A’ < A and

V(A'V B) = V(A') < V(AV B) — V(A).

Then in particular, we can consider the scenario with two traders where “Alice” has signal A (i.e.
she observes the corresponding subset of signals) and Bob has B, with a trading order Alice-Bob-
Alice. In perfect Bayesian equilibrium (PBE), Bob must be truthful at his trading opportunity
according to his beliefs even if Alice deviates from her strategy. By distinguishability, Alice can
infer his signal from this truthful report, so in any PBE, Alice is truthful and correct in predicting
Pab at the second opportunity. Hence the two traders’ expected utilities sum to the constant amount
V(AV B)—YV(L), even when Alice deviates. If Alice reports truthfully at her first opportunity (the
all-rush strategy), then Bob’s expected utility is V(A vV B) — V(A). But if Alice reports according
to A’ < A, then Bob’s expected utility is at most V(A’ v B) — V(A’), which by assumption of non-
substitutes is strictly smaller. This implies that Alice prefers the deviation, so truthful reporting
(and thus all-rush) could not have been an equilibrium. O

3.1.2 Complements and “all-delay”
We begin by defining an “all-delay” strategy profile, analogous to all-rush.

Definition 3.1.2. An all-delay strategy profile in a prediction market is one where, when the
traders are numbered 1,...,n in order of their final trading opportunity, each trader ¢ > 2 reveals
no information until after trader ¢« — 1’s final trading opportunity.

Theorem 3.1.3. If signals are distinguishable and are strict, strong complements, then for every
set of traders and trading order, every perfect Bayesian equilibrium is an all-delay equilibrium.

Proof. The ideas will be substantially the same as in Theorem 3.1.1, but the deviation argument
is somewhat trickier. In the substitutes “rush” case, an agent could deviate to immediate truth-
telling and ignore all subsequent consequences. Now, we will need agents to deviate to delaying
all information revelation, relying on their opponents’ response to ensure this becomes profitable
later. This is also the reason that we restrict to perfect Bayesian equilibrium.

The proof is by backward induction. We show that in any perfect Bayesian equilibrium: at each
time ¢, if C® is on the subsets lattice, then players play an all-delay strategy from time ¢ onward.
(As in the proof of Theorem 3.1.1, let C'®) be the signal induced by the random variable p{*) in
equilibrium. Because in PBE strategies are well-defined in every subgame, C® is also well-defined
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off the equilibrium path.) As in Theorem 3.1.1, this will prove the statement, because C© is on
the subsets lattice, corresponding to (), so the first trader plays all-delay at time 1, implying that
CW is on the subsets lattice, etc.

For the base case, at t = T, this is the trader’s final opportunity, so she is truthful by Lemma
3.1.1, which constitutes an all-delay strategy from T onward.

Now consider any trading time ¢ = T" and participant ¢ trading at time ¢.

First suppose t is ¢’s final trading opportunity; then by Lemma 3.1.1, she reports truthfully at
this time. By induction, traders play all-delay at all times after ¢, so this shows that they play
all-delay from time t onward.

If ¢ is not a trader’s final trading opportunity, but is after ¢ — 1’s final trading opportunity, then
there is nothing to prove for this time step. So suppose trader ¢ is trading at time ¢ with ¢ — 1’s
final opportunity coming at some ¢;_; > t. The inductive assumption implies that in any subgame
starting at time ¢ + 1 in PBE, 7 does not make any update until some ¢’ > ¢; 1. It also implies that
no other trader participates between ¢; 1 and ¢’. Finally, it implies that all traders participating
between time ¢ and ' (exclusive) report truthfully®. Let B denote the join of their signals. Then
i’s total utility from time t onward is

U=v(c) -EG(pV)+Vv(cvBYB) -V (COPF).

Now suppose for contradiction that i reveals some nontrivial information at time ¢, i.e. C® #*
C®=1. Then i can deviate to revealing nothing at time ¢, reporting according to C*=1) and
being truthful at time ¢'. In this case, by assumption of PBE, others continue to best-respond.
By inductive assumption, in any subgame of a PBE (which itself must be in PBE), others who
participate between ¢ and ¢’ therefore continue to report truthfully, implying that B is still revealed
between time ¢ and #’. Now, strong, strict complements imply

v (cW)—v(ct-D) <y (cWvB)-v(ct-VvB).

S
) U<y (C0D) G () + v (€0 By B) v (CtY v ).

But this is ¢’s utility for the deviation above (note that C; Vv BV B; = Cy—1 V B V B;). Since
the deviation is profitable, this gives a contradiction, implying that ¢ (and all players) must play
all-delay starting from time ¢ in any PBE. O

Theorem 3.1.4. If signals are distinguishable and are not strong complements, then there is a set
of traders and trading order such that no perfect Bayesian equilibrium is all-delay.

Proof. Analogous to the substitutes case (Theorem 3.1.2). The assumptions imply that there are
subsets-lattice signals A, B and continuous-lattice signal A’ < A such that

V(A'V B) — V(A') > V(AV B) — V(A).

Then in particular, we can consider the scenario where “Alice” has signal A and Bob has B, with a
trading order Alice-Bob-Alice. In PBE, Bob is truthful even if Alice deviates. By distinguishability,
Alice can infer his signal from this truthful report, so in any PBE, Alice is truthful and correct in
predicting p,p at the second opportunity. So utilities have the constant sum V(A Vv B) — V(L) even

%In a trading order such as i, j, k, j, k, it is possible that j reports something nontrivial at time 2, then reports
truthfully at time 4. But k does not participate at time 3, so j’s multiple reports WLOG telescope into a single
truthful report.
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when Alice deviates. If Alice reports nothing at her first opportunity, then Bob’s expected utility
is V(B) — V(L). But if Alice deviates to reporting to A" < A, then Bob’s expected utility is at
most V(A" vV B) — V(A’), which is strictly smaller. This implies that Alice prefers the deviation, so
truthful reporting (and thus all-rush) could not have been an equilibrium.

Hence, in perfect Bayesian equilibrium, trader 1 cannot play all-delay. ]

Discussion. These results show that informational S&C are in a sense unavoidable in the
study of settings such as prediction markets. However, the result raises many interesting questions
for future work. Two major questions are: How can we identify structures that are substitutes or
complements? and How can we design markets to encourage substitutability?

We give some initial steps toward answering these questions in Section 5.

3.2 Other game-theoretic applications

We will now examine a few game-theoretic contexts in which our results have immediate applications
or implications. Instead of developing full formal proofs and theorem statements, we focus on
illustrating the intuition of how to extend our results and the conceptual lens of informational S&C
to those settings.

3.2.1 Crowdsourcing and contests

In the study of crowdsourcing from a theoretical perspective, the “crowd” is a group of agents
who hold valuable information and the goal is to design mechanisms that elicit this information.
Specifically, here we are interested in “wisdom of the crowd” settings where the total information
available to the crowd is greater than that of the most-informed individual, and the goal is to
aggregate this information.

Before describing how informational S&C apply in such settings, we would like to contrast with
approaches to crowdsourcing that models each user’s contribution as a monolithic submission that
has some endogenous quality, such as DiPalantino and Vojnovic [2009], Archak and Sundararajan
[2009], Chawla et al. [2015] There, it is impossible to integrate or aggregate user contributions
and the problem is to incentivize and select one of the highest possible quality. In these models,
information plays no role and the model is equally well-suited to incentivizing production of a
high-quality good of which only one is required; sometimes this is explicit in the motivation or
model of the literature [Cavallo and Jain, 2012].

Here, we consider cases where users have heterogeneous information and we would like to
aggregate it into a final form that is more useful than any one user. The question is how users
behave strategically in revealing this information in the contest.

Collaborative, market-based contests for machine learning. Abernethy and Frongillo
[2011] proposes a mechanism for machine learning contests with a prediction market structure. This
mechanism was later extended to elicit data points and to more general problems in Waggoner
et al. [2015]. While these mechanisms have appealing structure, seeming to align participants’
incentives with finding optimal machine-learning hypotheses, the authors did not give results on
equilibrium performance or behavior of strategic agents. Here, we briefly describe the framework
of this mechanism and how our results can apply.
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In a machine learning problem, we are given a hypothesis class D. There is some true underlying
distribution e of data, which is initially unknown. In our setting we assume there is a prior belief
on this distribution e, which distributed as a random variable E. The goal is to select a hypothesis
d with minimum risk R(d,e) on the true data distribution. Here, R(d,e) = E.. ¢(d, z) for a loss
function £(d, z) on hypothesis h and a datapoint z drawn from e.

In the contest mechanism of Abernethy and Frongillo [2011], Waggoner et al. [2015], the mech-
anism selects an initial market hypothesis d®. As in the prediction market model of Section 3.1,
participants iteratively arrive and propose a new hypothesis d(*) at each time ¢t. At the end of
the contest, the mechanism draws a test data point z ~ e from the true distribution and rewards
each participant by their improvement to the loss of the market hypothesis, i.e. if ¢ updated the
hypothesis at time ¢ from d*~1 to d*), then i is rewarded £(d*~V, z) — £(d®), ) for that update.

We observe that prediction markets are a special case of this framework: Each e corresponds
to some fixed observation, for instance, for a given e the data point drawn is always the same z..
The risk R(d, e) is therefore always equal to ¢(d, z.) = —S(d, e) for the proper scoring rule S used
in the market. Thus, the above framework captures prediction markets as a special case. However,
we now show that prediction markets capture the essential strategic features of this setting.

Now, notice that in expectation over the test data z, this reward is equal to R(d(t_l),e) —
R(d® | e). Furthermore, we can define the utility of the designer to be u(d, e) = —R(d, €), that is, the
negative of the risk of that hypothesis on that data distribution. Hence, by the revelation principle,
there is some proper scoring rule S that is payoff-equivalent to u. A prediction market with proper
scoring rule S is strategically identical to the above contest. Thus, with a few small caveats,
our above results apply: in a Bayesian game setting where traders have signals Ay,..., A, and a
common prior on the distribution of signals and F, substitutes characterize “all-rush” equilibria
with immediate aggregation, while complements characterize “all-delay” equilibria.

The caveats are (1) that the scoring rule obtained by the revelation principle will not in general
be strictly proper if two beliefs about F map to the same optimal hypothesis d; and (2) it is
not guaranteed that traders can infer others’ information from their trades without a condition
analogous to the distinguishability criterion of Section 3.1. While these hurdles are surmountable,
our purpose here is only to mention the key ideas for how the above results on prediction markets
will generalize.

This connection immediately presents several questions for future work: When, in a machine-
learning setting, should we expect contest participants to have substitutable or complementary
information? In particular, if agents hold data sets and the goal is to elicit these data sets using
this structure (as explored in Waggoner et al. [2015]), when should we expect data sets to be
substitutable? Furthermore, how can we design loss functions so as to encourage substitutability
and hence early participation? This last question is discussed in Section 5.4.

Question-and-answer forums. Jain et al. [2009] propose a model for analyzing strategic
information revelation in the context of question-and-answer forums. Initially, some question is
posed. Participants have private pieces of information Ai,..., A, as in the prediction market
model, and they arrive iteratively to post answers. Unlike in the prediction market model, rather
than arriving multiple times, participants may only post a single answer; however, they may be
strategic about when they post this answer. By waiting until later, a participant may be able to
aggregate information from others’ answers, allowing her to post a better response. Unlike in the
prediction market setting, participants cannot “garble” their information. However these are not
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essential differences as compared to the substitutes or complements cases of prediction markets,
where in equilibrium participants do not want to garble or participate multiple times, but instead
fully reveal at the time that is optimal for them (as early or as late as possible, respectively).

In the model of Jain et al. [2009], the asker of the question has a valuation function V(S) over
subsets of the pieces of information. Jain et al. [2009] does not justify how such a valuation function
may arise, but we can now justify this modeling decision because any decision problem faced by the
asker gives rise to some such valuation function. In one case of Jain et al. [2009], the asker draws a
uniform “stopping threshold” ¢ on [V(L),V(A4; V --- vV A,)] (using our notation), and selects as the
“winning answer” the one whose information raises her value above this threshold. For instance, if
the first two users to post are 4, j with signals A;, A;, and then the third user k posts with signal
Ay, and we have V(A; V A;) <t <V(A; V A; V Ay), then user k is declared the winner.

From this model, the expected reward of a participant, which is an indicator for being declared
the winner, is exactly proportional to the marginal value of her information to the information col-
lected so far. Thus, substitutes imply that participants’ dominant strategy is to rush to participate
as early as possible, while complements imply that it is dominant to wait as long as possible. This
follows from diminishing (increasing) marginal value of information.

And indeed, Jain et al. [2009] identify substitutes and complements conditions on the informa-
tion which are exactly diminishing and increasing marginal returns, with the main result as stated
above. (The paper also considers several other methods of selecting the winner with more complex
features, which we will avoid discussing here for simplicity.)

We would like to emphasize that, while the above discussion intentionally highlights the simi-
larities between that work and this one, the authors do not provide any endogenous model of the
information, e.g. whether it be probabilistic and if so how it is structured, nor of the utility of the
asker of the question and how this utility might arise or be related to the structure of the informa-
tion. Without such models, it does not justify why a structure might satisfy their substitutes or
complements conditions (nor when/if one could expect the conditions to hold).

Our work provides answers to all of these questions. Information may be modeled as Bayesian
signals and the asker may face any decision problem. This gives rise to a valuation function over
signals that can capture the model in Jain et al. [2009]. Furthermore, under this model, that papers’
substitutes and complements conditions used in Jain et al. [2009] are subsumed by those proposed
here. Hence, we are able to bring this work under the same umbrella as prediction markets, the
crowdsourcing contests discussed above, and the algorithmic and structural results to be discussed
later. An example of substitutes for any of these problems is an example for all of them.
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4 Algorithmic Applications

Here, we investigate the implications of informational substitutes and complements on the con-
struction and existence of efficient algorithms for information acquisition. We first define a very
general class of problems, SIGNALSELECTION, to model this problem, and show positive results
corresponding to substitutes and negative results in general. These results are obtained by showing
tight connections to maximization of (submodular) set functions. We also investigate an adaptive
or online variant of the problem with similar results.

To focus on the problem of information acquisition, we abstract out the complexity of interacting
with the decision problem and prior. This differentiates these results from prior work on informa-
tion acquisition, but the overall approach — utilizing submodular set functions — is common (even
pervasive) in the literature (see Krause and Golovin [2012]). So we view the contribution of these
results as offering a unification or explanation for successful approaches in terms of informational
substitutes.

4.1 The SignalSelection problem

Definition 4.1.1. In the problem SIGNALSELECTION, one is given a decision problem w and
information structure on n signals Aj,..., A,; and also a family F of feasible subsets of signals
S C{1,...,n}. The goal is to select an approximately optimal S € F, i.e. to

For instance, suppose that an agent has a budget constraint of B and each piece of information
has a price tag; how to select the set that maximizes utility subject to the budget constraint? (This
is also known as a knapsack constraint.)

The SIGNALSELECTION problem is not yet well-defined because we have not described how
the input is represented. In general, the decision problem may be hard to optimize, and the
prior distribution may have support 2. Because we want to abstract out the complexity of
SIGNALSELECTION independently of the difficulty of these problems, we will assume an efficiently-
queryable input. The outline for our approach is as follows, pictured in Figure 4.

e For positive results, we require an input representation that allows efficient computation
of V(V;eg Ai) for some subset S of signals. In Section 4.1.1, we will discuss several such
representations. The most natural of these we call the oracle model.

e For negative results, we will reduce a hard problem — maximization of arbitrary monotone
set functions given a value oracle — to SIGNALSELECTION. The reduction will produce in-
stances of SIGNALSELECTION having a very concise and tractable input representation: The
signals Ay, ..., A, will be independent uniformly random bits, the event F will be the vector
(Ay,...,A,), and the decision problem will be immediately computable, just requiring trans-
parent calls to the value oracle of the original maximization problem. This implies that any
algorithm that can solve SIGNALSELECTION, under any “reasonable” model of input (par-
ticularly the oracle model and others we describe), can solve the instances produced by our
reduction.

Note that an oracle-based approach is very general because, if we do have an instance where the
input is concise and given explicitly, for example, the decision-problem optimizer is given as a small
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circuit, then we can just run our algorithms treating this input as an oracle, evaluating it when
necessary.

We next discuss input representations for positive results, including describing the oracle model.
We will then give our positive and negative results.

Monotone set function maximization. Our results will involve relating complexity of
SIGNALSELECTION to that of maximizing some f : 2V — R where N = {1,...,n} is a finite ground
set. The fact that ) is increasing, i.e. more information always helps, implies that we restrict to
monotone increasing f: If S C T, then f(S) < f(T'). Recall that submodular f correspond to
substitutable items, while supermodular f correspond to complements.

In set function maximization, the input is often given as a walue oracle that, when given a
subset S C N, returns in one time step f(.5). When f is submodular, it is known that polynomial-
time constant-factor approximation algorithms exist for many types of constraints. For instance,
there are efficient (1 — 1/e)-approximation algorithms under the knapsack constraint described
above [Sviridenko, 2004, Krause and Guestrin, 2005a] and more general matroid constraints [Cali-
nescu et al., 2011]. On the other hand, in general set function maximization is known to be difficult
information-theoretically, requiring exponentially-many oracle queries to obtain a nontrivial ap-
proximation factor even when restricting to monotone supermodular functions; we give an example
in Proposition 4.1.5.

Figure 4: Input representations and structure of results.

oracle model of input ~—__

or —| efficiently compute V

positive results

. . / and — (constant-factor
other input assumptions /V approximations)

substitutes

(a) The structure of our positive algorithmic results. Black arrows represent logical implication.
Given input represented in the oracle model, or some similar models, V can be efficiently computed.
We then show that this, along with the substitutes assumption, implies efficient algorithms for
SIGNALSELECTION for a variety of types of constraints, such as knapsack constraints.

value oracle for our reduction » utility function, ] any SignalSelection || solution for monotone set
monotone set function information structure algorithm function maximization

(b) The structure of our negative algorithmic results: a reduction to SIGNALSELECTION from
maximizing a monotone set function, given as a value oracle, under a set of constraints. Black
arrows represent an algorithmic reduction. Given the value oracle, we construct a utility function
and information structure. These are very concise and simple, allowing immediate computation
of V. Any algorithm for SIGNALSELECTION that can accept this kind of input representation will
then give a solution to the original maximization problem.
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4.1.1 The oracle model and computing V

Here, we investigate the computation of V), the value function. We restrict attention to evaluating
V at a set of signals, i.e. the join \/;cg A; of a subset S of signals. The reason is that this case is
sufficient for our positive results and is most compelling for SIGNALSELECTION. Furthermore, no
difficulty arises in how the input signal is represented, as it can always be given by a subset S of
{1,...,n}.

We begin with a case where the decision problem is specified by an oracle, but the prior p is
given explicitly. Because p may be exponentially large in n, the number of signals, we will later
introduce an oracle model for p as well.

Proposition 4.1.1. For any decision problem and set of signals Ai,...,A,, given an oracle
for computing the associated convexr G, we can compute V(\;cq Ai) in time polynomial in n,
[L; |Support(A;)| and |Support(E)|. (This is the size of the problem in general, as the prior distri-
bution ranges over this many outcomes (e,ay,...,ay).)

Proof. We assume an oracle that computes G(q) for any distribution ¢ on E. Note that G(q) =
maxy E [u(d, e) | e ~ q], so this is equivalent to assuming an oracle for the utility of the optimal
decision for a given distribution on F.

We need to calculate
% Al = E  G(pg.ics).
<\/ > {as€S} (Pa;iies)

1€S
Here, the expectation is over all realizations {a; : ¢ € S} of the set of signals {4; : i € S}, and
Pa;:ics is the posterior distribution on £ conditioned on that set of realizations.
There are at most [];cq|Support(A;)| terms in the sum, and each posterior pg,.ics can be
computed as follows:

_ ple,a; : i €9)
ela; i€ 8) = ——7—"""-—--,
plelas ) pla; 11 €5)
for each e in the support of E. This can be computed in time polynomial in the products of the
support sizes. [

In general, the running time of Proposition 4.1.1 is exponential in n, the number of signals.
This is unavoidable in general as the input itself may be this large (the prior distribution ranges
over exponentially many events). Thus, it is natural to suppose that the input is given as an oracle
in some fashion, making the input succinct. We define a natural model, give the associated positive
result, and discuss possible variants or weakenings.

Definition 4.1.2. In the oracle model for representing a decision problem u and prior p, one is
given:

1. An oracle computing the prior probability of any realization of any subset of signals.
2. Access to independent samples from the prior distribution.

3. An oracle computing, for a distribution ¢ on E, the expected optimal utility obtainable given
belief ¢, namely G(q).

Proposition 4.1.2. In the oracle model, we can approzimate V(\;cg Ai) to arbitrary (additive) ac-
curacy with arbitrarily high probability in time polynomial inn, Y; log |Support(A;)|, and |Support(E)|.
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Proof. For any given S, we would like to approximate

Y <\e/s AZ) = (g O Pasies)
up to an additive € error with probability 1 — J. We can abstract this problem as computing
E Z, with Z is distributed as G(pg,.ics) where {a; : i € S} is drawn from the prior. Letting
K = max,G(q) — min, G(q) over all {qg = pgics : S C {1,...,n}}, we can apply a standard
Hoeffding bound: The average of m i.i.d. realizations of Z is within € of the true average with
probability 1 — 0 as long as m exceeds %.

To see that we can in fact sample Z: We simply draw one sample from the prior, giving us
{a; : i € S}. We compute the posterior conditioned on this sample as follows: For each outcome e
of E/, we have

Paics(e) = ple,dai i€ B))
v p({a;:i € S})
This requires two calls to the prior computation oracle; then a call to the oracle for G completes
the calculation. The running time analysis simply observes that each signal realization a; requires
only log |Support(A;)| bits to represent, and there are n of them; similarly for outcomes of E. [

One would like to make weaker assumptions. However, dropping either the assumption of
independent samples or the oracle seems problematic. Without samples, evaluating E G(p,,.ics)
seems difficult because this is a sum over exponentially many terms, and we cannot a priori guess
which terms are “large” or where to query the oracle for the prior.

With independent samples but no oracle for marginal probabilities, naive approaches break
down because of the difficulty of accurately estimating conditional probabilities p(e|{a; : © € S}).
For instance, it may be that each outcome {a; : i € S} is very unlikely, so that one cannot draw
enough samples to accurately estimate the desired conditional probability using the ratio p(e, {a; :
i€ S}Y)/p({a; i€ S}). It is also of note that any distribution over the possible outcomes of the
signals and of E, including the prior itself, in general has size |Support(E)| - [, |[Support(A;)|,
which is exponential in n. So one must avoid writing down such distributions; and any small sketch
seems to quickly lose accuracy in estimating the conditional probability, which is computed from
probabilities on events (and again, these probabilities may all be exponentially small even while
conditional probabilities are large).

We give two further examples of how to overcome this difficulty. The first is to assume that the
prior is tractable in some way; in our case, sparse. The second is to push the difficulties mentioned
into an oracle of a different sort.

Proposition 4.1.3. Suppose we are given access to an oracle for G explicitly given the prior p;
and suppose that the prior is sparse, supported on k possible outcomes (e,aq,...,a,). Then we can
compute V(V;cg Ai) in time polynomial in n and k.

Proof. We can now assume that the prior is explicitly given as part of the input. The expectation in
the definition of V is now a sum that ranges over only at most k terms. For each term, corresponding
to some subset {a; : ¢ € S}, we can efficiently look up p(a; : i € 5), as well as (for each e)
p(e,{a; : i € S}), allowing us to compute the conditional probability p(e | a; : i € S). (Recall that
our notation pg,.ies is simply the vector of these probabilities, ranging over outcomes e of E.) These
are all the ingredients we need to evaluate each term in the sum, which is p(a; : i € §)-G(pa,:ics). O
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Proposition 4.1.4. Suppose we are given access to the following:

1. A decisionmaking oracle that, given a subset of signal realizations, returns an optimal decision
d*; and

2. an oracle for evaluating the utility u(d,e) of decision d when nature’s event E = e; and
3. access to independent samples of (e,ai,...,a,) from the prior distribution.

Suppose that u(d,e) is bounded. Then we can approzimate V(\;cq Ai) to arbitrary (additive)
accuracy with arbitrarily high probability in time polynomial in n and Y_,;log|Support(A;)| and
log | Support(E)|.

Proof. Again, given S, we wish to approximate f(.5), which is equal to
% -
V(Z\G/S A;) = e,all,E.:j.,an u(d*(a; : i € 9),e),
where d*(a; : i € S) is the optimal decision conditioned on observing signals {a; : i € S}. Again,
assuming that u(d,e) lies in a bounded range of size K, the same Hoeffding bound applies: By
drawing m i.i.d. samples from the prior and then calling the oracles to obtain d* and u, we can
approximate this expectation to arbitrary additive error with arbitrarily high probability, for a
suitable (polynomial-sized) m. O

This range of results gives some evidence that in general, if the decision problem has some sort
of succinct representation outside of the oracle model, then we may still hope to compute V. In
fact, the problem we will construct for our negative result, Theorem 4.1.2, will fit the model of
Proposition 4.1.4, where it is trivial to find and evaluate the optimal decision.

4.1.2 Positive and negative results via reductions

Positive results. As a corollary of the above reductions, we are able to reduce SIGNALSE-
LECTION to set function maximization, netting positive results especially in the case of substitutes.

Theorem 4.1.1. If signals are weak substitutes, there are polynomial-time 1 — 1/e — o(1) approx-
imations for SIGNALSELECTION under a variety of constraint families in the oracle model or with
succinct input as in Propositions 4.1.3 or 4.1.4. These include cardinality constraints (select at
most k signals), budget constraints (given a price associated with each signal, select a subset with
total price at most B), and matroid constraints.

Proof. Given an instance of SIGNALSELECTION with signals A1, ..., A,, we construct a monotone
increasing set function f : 2{L-" — R via f(S) = V(V,cg Ai). If signals are weak substitutes,
then V is submodular on the signal lattice, and hence f is submodular (as well as monotone).
We can therefore apply known algorithms for submodular maximization, in particular, Nemhauser
et al. [1978], Sviridenko [2004], Calinescu et al. [2011]. Now, there is a subtlety: Under some of the
models we propose, particularly the oracle model, we do not compute f exactly but instead can
only guarantee arbitrarily high accuracy with arbitrarily high probability. However, it is well known
(e.g. Kempe et al. [2003]) and proven (e.g. Krause and Guestrin [2005a]), that these algorithms
still give guarantees when we have a high-probability, high-accuracy guarantee on evaluations of
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f. The key point is that we can still evaluate, with arbitrary accuracy, the gradient or marginal
contributions of each element”. O

Discussion of approximate oracles. One would like a robustness guarantee of the following
sort: Even if we do not have an oracle that exactly optimizes the decision problem, suppose we
do have an oracle returning, say, a decision whose expected utility is within a constant factor
of optimal. Then give a good algorithm for SIGNALSELECTION in the substitutes case, with an
appropriately-decreased guarantee.

Unfortunately, it seems that this kind of result is unlikely without deeper investigation and
further work. To see the challenge, imagine that an adversary is allowed to design the oracle subject
to a constraint of some approximation ratio. Then our problem essentially reduces to submodular
maximization with noisy or approximate value oracles, where the noise may be adversarially chosen
subject to this approximation constraint. Unfortunately, recent work on these kinds of problems
have shown them to be difficult in general [Singer and Vondrak, 2015, Balkanski et al., 2015,
Hassidim and Singer, 2016]. This seems like a very difficult barrier, but perhaps future work can
leverage the structure of decision problems in some way to make progress in this direction.

Negative results. We show that in general, SIGNALSELECTION is as difficult as optimizing
general monotone set functions subject to constraints. In fact, this holds even for an easy special
case of SIGNALSELECTION where all signals are independent uniformly-random bits and the decision
problem is trivial to optimize (the solution is essentially to list all of the outcomes of signals you
have observed).

To do so, we give a reduction in the opposite direction: Given f, we construct a decision problem
and prior distribution such that V(V;cg Ai) = f(S). Hence, any algorithm for SIGNALSELECTION
gives an algorithm for optimizing f. In terms of input representation, while f may require expo-
nential space to represent explicitly, our reduction is essentially as useful as one could hope for in
this respect, creating a trivial wrapper around a value oracle for f.

It seems that any reasonable algorithm one might propose for optimally selecting sets of signals
should be able to handle such a tractable input. Hence, this is a strong negative result that, in
general, optimization over signal sets is just as hard as over item sets.

Theorem 4.1.2. For every monotone increasing set function f : 2V — R, with |[N| = n, there
exists a decision problem and a set of signals A1, ..., Ay, such that f(S) =V(V;egq 4i) for all S C N.

Furthermore, in the construction, it is trivial to compute and represent any posterior pg,.ics
conditioned on any realizations of any subset S of signals; and trivial (given a single evaluation of
f(S)) to compute the expected optimal utility G(pa,.ics)-

Proof. Each signal A; will be a uniform independent bit, and the event F of nature will consist of
the vector of realized a;s (a binary string of length n). Intuitively, the idea is that having observed
A;, regardless of whether its realization is 0 or 1, corresponds to having item i in the set S, while
not having observed A; (hence having a uniform belief over A;) corresponds to ¢ &€ S.

"Recent work (in preparation) considers the question of how much accuracy in evaluating f is required, showing
negative results when (roughly) accuracy is worse than ﬁ; but under the oracle model we can evaluate f with error
an arbitrary inverse polynomial with only an exponentially-small probability of error (simply via a Hoeffding bound),
in which regime it is well-known that this problem does not arise.
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The decision problem will look like a scoring rule, but it will be for predicting the mean of
FE rather than predicting a probability distribution over E. This is good news in terms of the
representation size: predicting the mean of F requires only reporting a vector in [0,1]", while a
general probability distribution over all outcomes of F has support size up to 2.

Formally, it turns out that the scoring rule characterization applies equally well to constructing
proper rules for predicting the mean of a random variable such as E. Specifically, given any
convex function F' : R®™ — R, one can construct a scoring rule R : R® x R®" — R. Using the
notation R(r;q) = E¢~q R(r, ), we have the key scoring rule property that R(r;¢) is maximized at
r = Ecvq e, where it equals F(Eqq€). A quick proof: Given F, define R(r,e) = F(r)+(F'(r),e—r)
where F'(r) is a subgradient at r. We have R(Ec~q€;q) = F(Ecqe) as desired. Now, note that
Dp(Eewge;r) = F(Eewg) — R(r;q), where Dp is the Bregman divergence of F'; since Bregman
divergences are nonnegative, this proves that R(r;q) is maximized at R(r;q) = R(Ee~q;q) =
F(Ecng).

Hence, the roadmap is as follows.

1. Construct a function F': [0, 1]" — R.

2. Verify that F is convex. This implies that there is a decision problem (namely, predicting
the mean of E) where the expected utility for predicting ;4 when one’s true expectation is
equals F'(j).

3. Verify that, for any subset S of {1,...,n} and for any set of realizations {a; : i € S}, we have
F(Ele | a; :i € S]) = f(9).

4. Note this implies that, for any S, we have V(V,;cg 4i) = f(5).

5. Check that, given a value oracle for f, we can efficiently compute any quantities of interest (the
posterior distribution on E, the posterior expectation of E, F(Ele | a; : i € S]), V(V;eg 4i))-

(1) The construction of F' is recursive on the dimension n. It is ugly, being discontinuous at its
boundary. However, drawing some pictures should convince the reader that F' can be “smoothed”
to a more reasonable, continuous convex function. For a base case of n = 1, on [0,1] we let
F(r) = f(0) on the interior where r € (0,1), and F(0) = F(1) = f({1}). (That is, f evaluated at
the set consisting of the item.) Note that, because f is monotone increasing, i.e. f({1}) > f(0),
F' is convex. The discontinuity implies that, for the associated proper scoring rule for the mean R,
we must have R(u,e) = —oo whenever p lies at an endpoint and e is in the interior. But again,
any smoothing of F' to be continuous will remove this property.

On [0,1]™, we let F(r) = f() for r in the interior of the hypercube. That is, F' is constant on
its interior. Furthermore, we have F(E..,e) = f(0), where p is the prior, hence V(L) = f(0).

Now we define F' on its boundary. Consider any face of the n-dimensional hypercube. Each face
corresponds to a particular setting of some A;, either to 0 or 1, by the coordinate whose value is
constant on that face. For instance, A; = 1 corresponds to the face consisting of the set of r € [0, 1]"
where r’s ith coordinate equals one. On both of the faces corresponding to A;, F(r) is defined to be
F(r) = Fpj(r—;), where r_; is r with the ith coordinate removed, and the function Fy;, is defined
recursively as follows. Consider the set function fy; : 2{Lnh\i} 5 R with friy(8) = f(S U {i}).
Then let Fy;; be the result of our construction applied to fg;;. This completes the definition of F'.
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Verbally, for each face of the hypercube, we have fixed some i to be in the set S passed to f,
and considered the resulting submodular function f(;; on the remainder of {1,...,n}. The value
of F on the interior of that face will be f({i}), by the recursive construction. To picture F' and
convince ourselves that it is well-defined, consider the intersection of the faces corresponding to,
say, A; =1 and A; = 0. This is a lower-dimensional face consisting of all points on the hypercube
whose ith bit equals 1 and jth bit equals 0. On the interior of this face (i.e. no other bits are equal
to 0 or 1), F has value f({i,7}). And so on all the way “out” to the corners r of the hypercube,
where r € {0,1}"; at all of these, F(r) = f({1,...,n}).

(2) We prove F is convex on the hypercube by induction on n, with the base case n = 1
already observed above. For the inductive step, note again the key point: by monotonicity of f,
if r is on the boundary of the hypercube and s is in the interior then F(r) > F(s). Consider any
two points 7, s € [0,1]", and break into cases. If both points lie in the interior, then because F' is
constant there, F'(ar + (1 —a)s) = aF(r) + (1 — a)F(s) for any 0 < o < 1. If one point lies in the
interior and one on the boundary, then any convex combination of the two lies in the interior. F' is
constant in the interior and weakly larger on the boundary, so the convexity inequality is satisfied.
If the points lie in different faces, then again any convex combination lies in the interior. Finally,
if the points lie in the same face, then F' coincides with some Fy;; on r and s, and Fl;y is convex
by inductive hypothesis.

(3) We now verify that F, when applied to the expected value of E given the realizations of
signals corresponding to S, is equal to f(S). Consider any set of realizations {a; : i € S} and let
uw=Ele|a;:ie€S]. If S=(, then by construction u = (0.5,...,0.5) and F(u) = f(0). Otherwise,
1 is the vector where each entry 7 is equal to a; if ¢ € S and 0.5 otherwise; this follows from the i.i.d.
distribution of the A;. Hence, p lies in the interior of the (low-dimensional) face of the hypercube
corresponding to the realizations {a; : ¢ € S}, hence F(u) = Fs(u—s) = fs(0) = f(S). Here
the notation fg is the function obtained from f by fixing S; Fgs is the corresponding recursively
constructed function on [0,1]*~1¥l; and p_g is u obtained by removing all coordinates.

(4) Use the notation fi4,;.ics = Ec[e | a; : i € S]. Since step (3) holds for all realizations of a
given set of signals, in particular (where R is the scoring rule corresponding to F'):

P(VA) = B B e s

a,-:z'esdg[l(%ﬁn (d; Pa,:ies) efinition of notation R(d;q)

= E R(ia;:ieS;Pasies) properness of R
a;: €S

= E F(ug,ies) construction of F' and R
a;: €S

= E f(9) step (3) of proof

a;: €S

= f(9).

(5) Given any set of signals S, one can immediately compute V(S) = f(S) by a call to the
value oracle for f. Given their realizations {a; : i € S}, the posterior distribution is simply uniform
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on those A; with j ¢ S (and of course has each A; = a; with probability one for ¢ € §). This
induces the posterior distribution over E (which can thus be concisely represented, even though
there are 2" possible outcomes in general), as well as the posterior expectation of E. Evaluating
F(r) at an arbitrary point r can be done quickly: Let S be the subset of coordinates on which r
is equal to either 0 or 1; then F(r) = f(S), as r lies on the interior of a face corresponding to S.
This requires just a single call to the oracle for f. Evaluating R(d,e) can thus be done in time
polynomial in n as well; the only additional step required is picking a subgradient of F' at each
point d € [0,1]", and there is only one choice at each point (as noted above, unless F' is smoothed,
this construction does require R(u,e) = —oo if p lies on a face and e in the interior). Finally, the
optimal decision for a given expectation of e is just that expectation. O

Explicit negative results. First, our reduction has implications even for the substitutes case.
Monotone submodular maximization to a better factor than 1—1/e, even under a simple cardinality
constraint, requires an exponential number of value-oracle calls [Nemhauser and Wolsey, 1978]
and, even given a concise explicit input, is NP-hard [Feige, 1998]. Because our reduction preserves
marginal values, a submodular set function reduces via Theorem 4.1.2 to weak substitutes. This
implies that our (1 — 1/e) approximation cannot be improved without a stronger assumption than
substitutability (or e.g. a polynomial-time algorithm for SAT).

Corollary 4.1.1. Fven when signals are weak substitutes with a cardinality constraint, achieving
a strictly better approzimation than 1 — 1/e to SIGNALSELECTION requires an exponential number
of oracle queries.

Without the substitutes/submodularity condition, it is well known that maximizing general
monotone set functions is difficult given only a value oracle, although such negative results are
not always explicit in the literature. For instance and for concreteness, one can even restrict to
monotone supermodular functions and the simple problem of maximizing f subject to a cardinality
constraint (select any set S of at most k elements, for some given 0 < k < n). In this case, there
does not seem to be a negative result in the literature despite this hardness being well-known (see
[cstheory.se, 2016]), so we give an explicit one here to illustrate the challenge.

Proposition 4.1.5. For any algorithm for monotone supermodular mazximization subject to a car-
dinality constraint, if the algorithm makes a subexponential number of value queries, then it cannot
have a nonzero approximation ratio.

Proof. We construct a simple family of supermodular functions. Let k£ be the cardinality constraint,
i.e. maximum cardinality of any feasible set. Let f(S) = 0 if |S| < k and otherwise let f(S) =
|S| — k. Pick one special set S* of size k, uniformly at random from such sets, and let f(S*) = 0.5.
Hence the optimal solution to the problem is to pick S* with solution value 0.5.

This function is supermodular: Given any element i, the marginal contribution of 7 to S is 0 if
|S| < k —1, then either 0.5 or 0 for |S| = k — 1, then either 0.5 or 1 for |S| = k, then 1 for |S| > k.
Because this marginal contribution is increasing, f is supermodular. Now any algorithm making
subexponentially (in k) many queries cannot, except with vanishing probability, guess which set of
size k is S*, so it will with probability tending to 1 select some other set of size < k, which has
solution value 0. 0

Corollary 4.1.2. No algorithm for SIGNALSELECTION accepting the oracle model of inputs, or any
of the other models discussed, can guarantee a nonzero approximation in general even for cardinality
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constraints and even if signals are assumed to be weak complements, unless it makes an exponential
number of queries to the oracles.

4.1.3 Adaptive SignalSelection

We now define an adaptive version of the problem and show that substitutability implies positive
results here as well. This problem has already been studied in very similar settings with a very
similar approach by Asadpour et al. [2008], Golovin and Krause [2011]. There is a significant differ-
ence in that these works aimed to maximize a set function over items in tandem with observations
about those items. Our model is a significant generalization in that it considers arbitrary kinds of
observations and an arbitrary decision problem. However, the goal of this section is not to claim
originality or generality of solution, but only to demonstrate that this problem can also be viewed
through the lens of substitutability.

Definition 4.1.3. In Adaptive SIGNALSELECTION, one is given a decision problem u and in-
formation structure on n signals Ai,...,A,; and also a family F of feasible subsets of signals
S C{1,...,n}. An algorithm for this problem is a policy that first selects a signal i; to inspect;
then observes the realization of A; ; then depending on that realization, selects a signal i to in-
spect, observing the realization of A;,, and so on. The algorithm must guarantee that the total
set S = {i1,12,...} of signals selected is in F. After ceasing all inspections, the algorithm outputs
some decision d. The goal is to maximize E [u(d, €)] over the distribution of signals and E as well
as any randomness in the algorithm.

We note that the definition of SIGNALSELECTION abstracted out the process of deciding an
action d given the realizations of the signals, as we assumed that it was known how to optimize the
utility function. Here, it seems cleaner to integrate the choice of the decision with the algorithm;
but this is not the fundamental difference between the two settings. The fundamental difference
is adaptivity: In Adaptive SIGNALSELECTION, the algorithm may observe the outcome of the first
selected signal before deciding which signal to select next, and so on.

Here we need a somewhat stronger substitutes condition.

Definition 4.1.4. A set of signals on a subsets lattice £ are pointwise weak substitutes if, for each
A’ < A and B in L, and for each of the outcomes a’ € A’,a € A in the support of the prior, letting
@', Q be the posterior distributions conditioned on A’ = a/ and A = a respectively,

V@ (B) — V@ (1) > VR(B) — VQ(1).
In other words, the left side is the marginal value of B given the observation a’, and the right is its

marginal value given observation a.

Verbally, signals are pointwise substitutes if having observed more information never increases
the expected marginal value of a signal. The key difference is that for “regular” substitutes, the
condition can be written as follows:

E Vi@ (B) v (1)) > B [vQ(B) - v e(1)].

In other words, signals are substitutes if expecting to observe more information never increases
the expected marginal value; they are pointwise substitutes if observing more information never
increases expected marginal value.
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Our goal here is to illustrate that techniques from submodular maximization extend naturally.
We focus on the simple cardinality constraint case and show that the greedy algorithm for monotone
submodular maximization [Nemhauser et al., 1978] also gives good guarantees in this adaptive
setting, when we have a strong substitutes condition.

Algorithm 1 Greedy algorithm for Adaptive SIGNALSELECTION under cardinality constraints.

: Input: Decision problem u, E, Ay, ..., Ay, p, in oracle model; cardinality constraint k
: Let Sop =0
: Let go = p, the prior
: forte{l,...,k} do
Let iy = arg maxjgg V%1 (A;)
Let St = St—l U {Zt}
Select A;, and observe a;,
Let g+ equal the Bayesian posterior pq,.jes,
end for
: Output: argmaxgE.q, u(d, e)

© XD T Wy

[
o

Theorem 4.1.3. When signals are pointwise weak substitutes, Algorithm 1 (Adaptive Greedy)
obtains a (1 — 1/e)-approximation algorithm for Adaptive SIGNALSELECTION under cardinality
constraints in the oracle model.

Proof. The usual proof essentially goes through. We utilize notation from Algorithm 1 (adaptive
greedy). The expected performance of S, the set constructed at time ¢, is V¥ (S;) (we use this
notation as shorthand for evaluation at the join of all signals in S}).

Let V* be the expected performance of the optimal policy. We will upper-bound V* for each
t by the performance of a hypothetical algorithm that first selects S;, then selects all k£ of the
signals selected by the optimal policy. For a fixed S, such a hypothetical algorithm can obtain,
in expectation, at most the performance of S; plus k£ times the maximum expected marginal con-
tribution of any signal to S;. This follows from pointwise substitutes: as the algorithm acquires
more information, the expected marginal contribution of a signal does not increase. So, taking the
expectation over this condition, which holds for each realization of Sj:

V< VU’P(St) + k?(VU’P(St+1) — Vu’P(St)>.
This is exactly the inequality that produces the approximation ratio in submodular set function case.
k
The inequality implies by induction that V¥ (S) > (1 — (1 — %) > V*, and this approximation
ratio is always better than 1 —1/e. O

36



5 Structure and Design

In this section, we give some initial investigations into the structure of substitutes and complements.
We focus on two kinds of questions: Understanding what types of information structures may be
generally substitutes or complements for a broad class of decision problems; and understanding
how to design a proper scoring rule or other decision problem so as to impose substitutability on a
given signal structure.

In terms of contributions of this paper to these problems and starting points for future work,
it is also worth recalling the relatively diverse set of equivalent definitions of informational S&C
derived in Section 2.4. There, we showed that substitutes can be defined in terms of submodularity,
generalized entropies, or divergences.

5.1 Universal substitutes and complements

An ideal starting point would be characterizing information structures that are always substitutable
or complementary; we term these “universal”. We note that Borgers et al. [2013] investigated a
two-signal variant of this problem, with a definition essentially corresponding to weak substitutes
on those two signals, with some results of the same flavor.

Intuitively, there are “trivial” cases that satisfy this universality criterion, at least for weak
S&C. An example of trivial weak substitutes is the case where A1 = Ay = --- = A,,. Here, after
observing any one signal, all of the others do not change the posterior belief at all. An example of
trivial weak complements is the case where each A; is an independent uniformly random bit and
E=A1®A @ @ A,, the XOR of all the bits. Here, any subset of n — 1 signals does not change
the posterior belief at all compared to the prior, but the final signal completely determines F.

Definition 5.1.1. Given an information structure E, Ay, ..., A, with prior P, we term Ay,..., A,
universal weak substitutes if they are weak substitutes for every decision problem. Universal moder-
ate/strong substitutes and weak/moderate/strong complements are defined analogously. We term
the signals trivial substitutes if for every realization of a1, ..., a, in the prior’s support, pe; = pa,.....a,
for all 4 and ¢rivial complements if for all realizations ai, ..., an in the support, p(y;.j2;y = p for
all . We term them somewhat trivial if the prior is a mixture distribution that is equal to a triv-
ial structure with some probability, and some other arbitrary other structure with the remaining
probability.

Proposition 5.1.1. If Ay, ..., A, are universal weak substitutes, then they are somewhat trivial.
Furthermore, their “trivial” component is more informative than the nontrivial component, in the
following sense. Let X; C Ag be the convex hull of {ps, : a; € A;}, and let Y C Apg be the convex
hull of {pas,...an : a1 € A1,...,an € Ap}. If Ay, ..., A, are universal substitutes, then X; =Y for
all 7.

Proof. Consider any information structure that does have X; = Y for all . We give a decision
problem for which it sometimes satisfies strictly increasing marginal value. To do so, by Corollary
2.3.1, it is enough to construct a convex function G with appropriate structure, for which we then
know a decision problem (namely, a scoring rule, Fact 2.3.1) exists. The idea is pictured in Figure
5e.

Let X be the convex hull of {p,, : i =1,...,n;a; € A;}, that is, of all possible posterior beliefs
conditioned on one signal. Let G(q) be zero for ¢ in the convex hull of that set of beliefs (note
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that the prior p must be in the convex hull) and G(q) be increasing outside of this convex hull.
Then for any one signal A;, we must have V(A4;) = V(L) = 0 as V(4;) = E,, G(py;). But by
assumption, there exist posterior beliefs for multiple signals that fall outside this convex hull. This
follows because each p,, = Eq; pa,a; for any j # i, so unless pg,q; = pa, for all j, there are cases
where some posterior belief falls outside the convex hull mentioned. (And if pg,a; = pa, always,
then repeat the argument for triples of signals a;, a;, ax, and so on; by nontriviality, the argument
will succeed at some point.)

Now for these posterior beliefs falling outside the convex hull, they occur with positive proba-
bility and have a positive value of GG, hence the marginal value of additional signals because strictly
positive at some point, while the marginal value of the first signal was 0.

To see that this implies a mixture containing trivial substitutes, note that the convex hulls
X; = X for all 7, j, so in particular the corners of these convex hulls must be points where p,, is
equal, in the case where A; = a;, to every posterior belief conditioned on any number of signals. [

Theorem 5.1.1. All universal moderate substitutes are trivial. (Hence, the same holds for univer-
sal strong substitutes.)

Proof. Any universal moderate substitutes must be universal weak substitutes as well; so we know
via the proof of Proposition 5.1.1 that any candidates must have a mixture with trivial substitutes.
However, we can let A’ be a signal determining whether that component of the mixture has occurred.
Then one implication of moderate substitutes is that, conditioned on A’, all signals are weak
substitutes. Therefore, universal substitutes implies that even conditioned on A’, the prior is a
mixture containing a trivial component. Repeating the argument gives that the entire prior must
consist only of trivial components. O

Proposition 5.1.2. Consider a binary event E € {0,1} prior probability p = Pr[E = 1], and
signals Ay, Ao with posterior probabilities p,, = Pr[E = 1|41 = a1], and so forth. Suppose that:

1. maxgy, ||p — pa,|| < 7 and maxg, ||p — pa,|| < 7; and
2. minal,az Hp - pa1,a2|| > 2r.
Then {Ay, As} are universal moderate complements.

Proof. The idea is that posterior beliefs on multiple signals usually tend to lie “farther” from the
prior than those on single signals, because at least in some cases, more information leads to more
certain (hence extreme) beliefs. Convex functions already tend to give larger marginal value to
more extreme cases. Hence, convexity of the decision problem encourages complementarity; and
it cannot discourage complementarity very much because a convex function can only be “so flat”.
This is pictured in Figure 5. By moving the posteriors pq, 4, all very far from the prior, compared
to the posteriors pg,, Pe,, We get increasing marginal returns.

Pick any convex G on [0, 1] and let all probability distributions on E be represented as scalars
q € [0,1]. This includes the prior p and posteriors such as p,,. It suffices to show that E G(pg,a,) +
G(L) > EG(pa,) + EG(pay)- Let p* be the minimizer of G on [0,1]. Then G(payay) > G(Pay) +
G'(Pay)(Pajay — Pay)- Now we claim that G'(pa,)(Payay — Pay) > G(pa,) — G(p). This implies
G(Payas)+G(p) > 2G(pa, ), and after taking the analogous case reversing a; and ag and expectations,
we get that the desired inequality must hold. To prove the claim, consider the case P g, > Da;-

Then (Pajay — Pay) > 7, and we want to show G’'(pg,) > M. This holds by definition of a

38



subgradient as the right side is at most the slope of a line connecting p and p,,. The analogous
argument holds for the case pg 4, < Pa,- O

Corollary 5.1.1. An example of universal complements are the signals Ay, A each independently
equal to 1 with probability q € [0.25,0.75] and E = A; @ Ay (the XOR operation).

We note that these may be universal complements for larger ranges of ¢ as well, and a very
interesting question for future work is to characterize the set of universal complements. This seems
to require more work particularly for £ with a larger number of outcomes. For binary E which are
equal to a deterministic function of Ay, ..., A,, it seems possible to relate complementarity to the
sensitivity of a function in Boolean analysis.

5.2 Identifying complements
Our main result here is to identify the following very broad class of complements.

Proposition 5.2.1. Independent signals are strong complements in any decision problem where G
has a jointly convex Bregman divergence Dg(p,q).

Proof. Dg(p,q) is termed jointly convex if it is a convex function on the domain Agp x Ag (as
opposed to the case where it is convex in each argument separately, for instance). Assume signals
are independent; consider any A, B on the subsets signal lattice (incomparable to each other) and
any A’ on the continuous lattice with A’ < A. By Lemma 2.4.1, showing strong substitutes is
equivalent to showing that

E DG’(pa’lnpa’) < E DG(pabypa)~
a’,b a,b
Use independence and rewrite to this convenient form:

I% ]EDG(pa’bapa’) < EE E DG(pab;pa)

/ | ’

Note that if b were not independent of a, a’, then the inner expectations would require conditioning
the distributions of a and a’ on the outcome of b. Now, it suffices to prove the following for all b, a':

DG(pa’bapa’) < (}E/ DG(pabapa)-

Now, since D¢ is jointly convex, Jensen’s inequality will imply this fact if we can just show that
Pa'b = Eqjo Pab and pyr = Egjy pa. We prove the first equality; the second is exactly analogous but
easier.

ple,d’,b)
p(a’,b)
e a,d,b)
=2

]a a’ b p(a,a’,b)
- Z a b)

p(a, a’)p(b)

= Sl ey
= Zp (e]a, b)p( a\a ).

plela’,b) =
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We used Bayes rule and the law of total probability, then eventually used the fact that p(ela,a’,b) =
p(ela,b) (because @’ and e are independent conditioned on a) and that a and a’ are independent of
b. O

A corollary is that independent signals are complements for the log scoring rule and the
quadratic scoring rule, as their divergences (K L-divergence and Lo distance squared) are jointly
convex.

On the other hand, some form of this restriction on the decision problem is needed:

Claim 5.2.1. If Dg is not convex in its second argument, then independent signals are not neces-
sarily complements.

Proof. We consider a binary event E and G(q) where ¢ € [0,1] is a probability that £ = 1. A
counterexample is to let G(q) = 0 for ¢ < 0.75 and G(q) = g — 0.75 for larger ¢q. Consider
any decision problem associated with this G (for instance, predicting against a proper scoring
rule derived from G). The two signals A and B are independent uniform random bits, and F
is equal to the binary OR of the bits. In this case, one can check that V(4) = V(B) = %, but
V(L) = 0 and V(A v B) = . Thus in particular V(A) + V(B) > V(A vV B) + V(A A B), so
they are not complements. Note that G may be modified to be strictly convex while preserving the
counterexample. Also note that the sharp “kink” in the graph of G at ¢ = 0.75 forces Dg to be
non-convex in its second argument (one can take the first argument to be the prior on F, ¢ = 0.75,

choosing the subgradient Gy, 75(¢) = ¢ — 0.75). O

5.3 Identifying substitutes

It was previously known [Chen et al., 2010] for prediction markets under the log scoring rule that
conditionally independent signals induced players to reveal their information as early as possible.
The result in a different guise was shown in an algorithmic context, namely, that for conditionally
independent signals, . Both of these turn out to correspond to the fact that signals are always
substitutable in the context of the log scoring rule:

Theorem 5.3.1. For the log scoring rule, signals that are conditionally independent upon the event
E are strong substitutes.

Proof. Suppose signals Aj,..., A, are conditionally independent on E. Let A, B on the subsets
signal lattice and A’ on the continuous lattice with A A B < A" < A. We are to show that
V(A'Vv B) —V(A") > V(A V B) — V(A). Recall that, using the entropy characterization, V(A) =
—H(E|A) = H(A) — H(E, A) by the properties of the entropy function.
V(A'VvB)-VA)=H(A,B)-H(E,A,B)—H(A)+ H(E,A)
= H(B|E,A") — H(B|A').
Similarly, V(A vV B) — V(A) = H(B|E,A) — H(B|A). Now because A" = A A B, by conditional
independence, H(B|E,A’) = H(B|E,A). Meanwhile, by conditional independence, H(B|A’) <
H(BJ|A), which completes the proof. O

However, this fact is apparently quite special to the log scoring rule.

Proposition 5.3.1. Conditionally independent signals are not necessarily substitutes for the quadratic
scoring rule (which has a jointly convex Bregman divergence).
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Proof. The quadratic scoring rule has expected score function G(p) = ||p||3, and therefore S(p, e) =
2p(e) — ||p||3. Let E be binary with p(E = 1) = r > 0.5 and let each of A, B be i.i.d. conditioned
on FE, each equal to E with probability s > 0.5 and equal to the bit-flip of E otherwise.

One can check that for cases where r is large compared to s, for instance r = 0.9 and s = 0.8, we
have V(A)+V(B) < V(AV B)+V(A A B) (recall that V(A) = E, G(p,)). Hence substitutability is
strongly violated. For instance, an agent observing A would prefer to report second in a prediction
market after an agent observing B, even when both agents are constrained to report truthfully.

Intuitively, what happens in this information structure is that neither the realization of A nor
of B on its own is enough to change the rather strong prior on E. However, sometimes, observing
both A and B (if they are both 0) can cause a large change in beliefs about E, which means that
observing both can sometimes be very valuable. O

5.4 Designing to create substitutability

We now briefly consider the question of designing a decision problem or scoring rule so as to
enforce substitutability of information. In a game-theoretic setting such as prediction markets, one
would like to design mechanisms where information is aggregated quickly; as we have seen, this is
essentially equivalent to making information more substitutable.

In an algorithmic setting, the decision problem with which one is faced may be difficult to opti-
mize due to non-substitutability of information. One would like to construct a “surrogate” decision
problem for which the information at hand is substitutable, then use algorithms for (Adaptive)
SIGNALSELECTION to approximately maximize that surrogate, with some guarantee for the orig-
inal problem. This is the approach of submodular surrogates in the literature [Chen et al., 2015].
We do not directly consider this problem in this paper, but we hope that these techniques may
yield insights or tools that are useful in these problems for future work.

An important conclusion of this paper is that substitutability, or lack thereof, tends to arise
from a combination of two factors:

1. The distances between beliefs due to the information structure. If updating on additional
information tends to spread beliefs farther apart, then that information tends to be comple-
mentary. If it tends to make smaller changes in beliefs, it tends to be substitutable.

2. The curvature of the expected utility function G : A — R associated to the decision problem.
Highly-curved regions correspond to high marginal value of information to beliefs in those
regions.

We illustrate some of this intuition, with an eye toward design of substitute-encouraging G, in
Figure 6. By designing a G that is highly curved close to the prior, then gradually less curved
farther from the prior, one increases marginal value of information near the prior and decreases it
(relatively) further away; this increases substitutability.

A formalization of the problem. Given an information structure consisting of a prior
E and signals Aj,...,A,, (when) can we construct a decision problem wu such that the signals
are substitutes? Noting that a trivial decision problem, e.g. with one action, technically satisfies
substitutes, we will seek decision problems that satisfy a “nontriviality property”.
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Definition 5.4.1. Substitutes are somewhat strict if the marginal value is always diminishing
on the corresponding lattice, and sometimes strictly diminishing. Analogously, complements are
somewhat strict if marginal value is always increasing and sometimes strictly increasing.

Unfortunately, our results on universal S&C in Section 5.1 essentially imply that this is not
always achievable.

Proposition 5.4.1. For some information structures, it not possible to design a decision problem
giving rise to weak, somewhat strict substitutes; the same holds for complements. However, if the
information structure does not contain a mizture of trivial substitutes, then it is possible to design
a decision problem under which signals are weak, somewhat strict complements.

Proof. We showed in Corollary 5.1.1 that nontrivial universal complements exist; for these struc-
tures, for every decision problem, they are weak complements, which implies that they cannot be
somewhat strict substitutes.

Meanwhile, in Proposition 5.1.1, we showed that unless the information structure contained
a mixture with trivial substitutes, one can construct a decision problem satisfying weakly and
sometimes strictly increasing marginal value. O

A crucial direction for future work is to better characterize for what information structures it
is always possible to design for substitutability.
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Figure 5: Universal substitutes and complements. In each plot, there are two binary
signals Ay, Ao and a binary event E. The z-axis is the probability of E. G is the expected
utility function for some decision problem (different in each plot). The circles correspond
to the value of no signals (black), one signal (blue), and two signals (red). The blue braces
measure the distance from the prior to posteriors on one signal; red measure additional
distance to the posterior on two.

expected
utility

P
0 | I I 1
PrlE=1]A#A,] Pr{E=1|A=1] Pr[E=1] Pr{E=1|A, =0] PrE=1|A=A)]

(a) Curvature increases complementarity. Here Ay, Ay are i.i.d. noisy bits and E = A; ® Ay, the XOR.
Because G is convex, it is more extreme at more extreme beliefs, which tend to correspond to having multiple
signals. Here the marginal value of a second signal is much higher than that of a first; complementarity.

expected G
utility

P A \K_HK_H — A
0 | | | 1
PrE=1]A#A,] Pr{E=1 | A =1] Pr{E=1] Pr[E=1| A, =0] Pr{E=1|A=A,]
(b) Flattening G cannot remove complementarity. For these signals (the same as in (a)), the Bayesian
update on the second signal is always larger than on the first. Intuitively, even for flat G, this structure will
always exhibit complementarity. These signals are universal complements.

expected
utility
G & & O &
A e A N A N\
0 | | | | 1
Pr[E=1| A=A, = 0] Pr{E=1] PrE=1|A=A,=1]
Pr[E=1| A,=0] PrE=1|A#A,] Pr[E=1|A, =1]

(c) Curvature destroys substitutability. Here E is a uniform bit conditioned on which each A; = E
independently with large probability. These are often substitutes, but by introducing high curvature at an
extreme point, we create a problem where useful decisions can only be made with access to multiple signals.
The first signal has no marginal value over the prior, while the second signal has some marginal value, so they
are now complements. In general, this argument shows that universal substitutes must involve a “triviality”
ruling out this construction.
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Figure 6: Encouraging information to be substitutes. Here, E is binary, and the
x-axis plots the probability ¢ that E = 1, with the black curve plotting G(q), the expected
score function corresponding to a proper scoring rule. Illustrates an informal case with
two signals A and B, each of which may be “lo” or “hi”, together with some distributions
on E: the prior, the posterior conditioned on one of the signals being “lo” or “hi”, and
the posterior conditioned on both signals being “lo” or “hi”.

G(9)

| | | | |
| | I I I
0 Pr[E=1|lo,10] Pr[E=1lo] Pr{E=1] Pr[E=1 | hi] Pr[E=1 | hi, hi] 1

(a) A “bad” choice of G. Here, many information structures will be complements because the value of
any new information is very small, yet additional information on top of that becomes valuable. In particular,
for each signal, say A, E, G(p,) = G(p) where p is the prior (purple points). Yet the expected value of both
signals, Eup G(pas) (blue points), is larger than G(p).

G(9)

| | | |
| | I I I
0 Pr[E=1]|lo,lo] Pr[E=1]lo] Pr{E=1] Pr[E=1 | hi] Pr[E=1|hi, hi] 1

(b) A “good” choice of G. Here, many information structures will be substitutes because the value of new
information is initially high around the prior. One way to see this is that the Bregman divergence becomes
low far from the prior; recalling that E, ; D (pab, po) is the expected difference in score between predicting
Dab versus just predicting p,, this implies that there is a small expected gain from observing B once one
knows A (in other words, substitutability).
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6 Discussion, Conclusion, and Future Work

6.1 Contributions and discussion

This paper makes two types of contributions. One type is to propose definitions of informational
substitutes and complements and provide evidence that these definitions are natural, useful, and
tractable. The other type is to prove concrete results for game-theoretic and algorithmic problems.
These two contributions are interrelated: The concrete results rely on the definitions and charac-
terizations of S&C, while evidence in favor of the definitions comes from their utility in proving the
concrete results.

We begin with a summary of the contributions in terms of concrete results, then summarize the
evidence in favor of our proposed definitions of informational S&C. We then discuss future work in
a variety of directions.

Contributions independent of S&C The first application in this paper was to identify
essentially necessary and sufficient conditions for the two types of prediction market equilibria that
have been most studied: The “good” case where all traders rush to reveal information as soon as
possible, and the “bad” case where all traders delay all revelation as long as possible. This result
broadly generalizes previously-known special cases Chen et al. [2010], Gao et al. [2013]. These con-
ditions corresponded respectively to our definitions of informational substitutes and complements.
Our other results regarding these definitions have implications and applications for the market set-
ting. We gave some tools and approaches for identifying and designing substitutability, which (we
showed) corresponds to the main goal of a market designer: encouraging immediate information
revelation.

We also gave some additional game-theoretic applications in other settings involving strategic
information revelation and aggregation. We hope that future work can explore more connections.

The second main application was to the algorithmic problem of information acquisition, which
we formalized as the SIGNALSELECTION problem. This is a very natural and general problem,
capturing any sort of information acquisition scenario. We showed that substitutes imply efficient
approximation algorithms via submodular maximization, offering a unifying lens or perspective
on a variety of literature utilizing this approach. We also saw matching hardness in general when
substitutability is not present. These results give hope that substitutable structure may be leveraged
in future algorithmic investigations of related problems.

Evidence for informational S&C Informational substitutes require much more background
and work to define than their counterparts for goods, as discussed in Section B. This leads to many
ways in which the definition can “get it wrong”. However, there are several reasons to believe
that the definitions proposed in this paper are substantially on the right track. The three goals
we address are showing that they are natural, useful, and tractable. The evidence for these is
summarized below; however, there is room for further investigation and discussion on the subtleties
of the proposed definitions. As additional future applications are investigated, it may be found
that tweaks in the definition improve it along these axes.

Natural. The following evidence suggests that the definitions of informational S&C presented
in this paper are natural.
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e They are defined in terms of sub- and super-modular lattice functions, sharing this property
with widely accepted definitions of S&C for items. The weak, moderate, and strong versions
of the definitions correspond to lattices have natural interpretations both game-theoretically
— strategies that are binary, deterministic, or randomized — and algorithmically, optimizing
over subsets, deterministic “poolings”, or randomized “garblings”.

e They can be alternatively characterized information-theoretically, by diminishing (increasing)
amount of information revealed by a signal.

e They can be alternatively characterized geometrically, by the distance a belief is moved by a
posterior update on one signal given the other.

e S&C respectively characterize “all-rush” and “all-delay” equilibria in prediction markets.
Hence, our definitions (or very close variants) seem unavoidable when studying equilibria
of these basic models of strategic play.

e The algorithmic complexity mirrors the now-familiar story in the case of items: approximately
optimizing over substitutes can be done efficiently (at least in the case of weak substitutes),
while for the general case or complements the problem is difficult.

Useful. The usefulness of the definitions, so far, is reflected by the results summarized above.
In particular, they allowed resolving an open problem on strategic aggregation in prediction markets
that was previously solved only for particular cases.

Tractable. Our definition of informational S&C refers to a very general setting of decision
problems and information structures. It is not initially clear that a definition that broadly captures
S&C can also be amenable to analysis or intuition. This particularly presents a challenge for our
definitions because they depend on both the decision problem and the information structure, each
of which can be a very complicated object.

We presented a convexity-based approach, namely, studying the convex expected-utility function
G, and showed that it both captures geometric intuitions for understanding S&C and gives useful
analytic tools. One of these is prediction and the theory of proper scoring rules, which gives a
way to construct a decision problem from any such convex G. We used these tools to give some
example broad classes of informational S&C as well as positive and negative results on designing
decision problems to encourage substitutability or complementarity. We also gave intuitive defi-
nitions of informational S&C from the perspectives of information theory (generalized entropies)
and geometry (divergences). These found some formal applications already in this paper, e.g. a
convexity condition on the divergence definition of substitutes implies that all independent signals
are substitutes.

6.2 Future work: game theory

An immediate direction is to extend our results to broader models of financial markets. We believe
that analogous results are likely to hold. It would also be ideal, albeit esoteric, to understand
the distinction between when Bayes-Nash equilibria and perfect Bayesian equilibria exist or are
essentially unique. In a Bayes-Nash equilibrium that is not perfect Bayesian, some trader essentially
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makes a “threat” that is “not credible”. Can such scenarios exist when signals are substitutes or
complements?

Many broader questions about S&C have a direct implication on markets via our results, and
we outline some of these directions below.

For more general Bayesian games, the implications of our results are not yet clear. With
multiple players, for instance, it is no longer true that more information always helps. It may be
most tractable to look at special cases such as auctions or signaling games, although those seem
to have a significant component of strategic substitutes as well. One natural direction is common-
value auctions, where in one case [Milgrom and Weber, 1982] informational substitutes have been
explicitly used.

6.3 Future work: algorithms

There are many potential algorithmic questions raised by these definitions. One is to consider
existing problems, such as algorithmic Bayesian persuasion [Dughmi and Xu, 2016] or signalling in
auctions, through the lens of substitutability. However, such problems are already significantly more
complex because of the interaction between the players, which is largely absent or abstracted out so
far in this work. We hope that further investigation will uncover the connections to such settings.
Meanwhile, one might ask whether, for instance, variants of SIGNALSELECTION on the discrete or
continuous lattice are well-motivated in any settings and, if so, whether they are tractable.

More specifically and technically, one might ask whether the oracle model presented in this paper
the best way to represent a decision problem, or if there is some other natural alternative beyond
those we presented. Perhaps it is possible to obtain positive results with weaker or substantially
different assumptions on the oracles.

Another group of algorithmic questions relates to better understanding the definitions them-
selves. One concrete question is the following: Given a decision problem, perhaps in the oracle model
(or some other well-justified model), determine whether signals are substitutes, complements, or
neither. Or more strongly, given a decision problem and two signals A, B, find

arg min V(Q v B) — V(Q).

An algorithm for this problem and multi-signal generalizations would help identify substitutes or
complements, and would more generally solve e.g. the problem of how to trade in general prediction
markets where signals are neither substitutes nor complements, but something in between. Many
more possible algorithmic questions are likely to arise as investigation continues.

6.4 Future work: structure of S&C

A straightforward direction for future work is to identify further classes of substitutes and com-
plements, including natural classes of decision problems and information structures that together
produce S&C. This question also bears directly on the design of prediction markets.

The second straightforward direction is how to “design for substitutability”. We believe that
our results give a good start in this direction, but many questions remain. For instance, can
we characterize all universal substitutes and complements? (This characterizes cases where we
cannot design for substitutability or complementarity.) And, in cases where we can make signals
strict substitutes, can we design some natural and computationally efficient method for doing so?

47



We hope that the geometric intuitions in this paper provide a starting point for addressing such
questions.

Finally, one could be interested in exploring variants of the definitions taking the same approach
but with some piece of the puzzle substantially altered. Concretely, one could imagine a very risk-
averse agent with an adversarial view of nature and some more combinatorial representation of
information. Can one formulate analogous definitions in cases like these?
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A Other Related Work

We first survey related work on substitutes and complements for information (and in general). Then,
we discuss work relating to information aggregation in markets and other game-theoretic settings.
Finally, we describe algorithmic work on information acquisition (particularly in “submodular”
settings).

A.0.1 Substitutes and complements

The notion that pieces of information may exhibit substitutable or complementary features is
certainly not a new intuition; but up until this work, it seems to have remained mainly an intuition.
There seem to be few attempts at formalizing a general definition or even special cases. The only
work we know of in this direction is Borgers et al. [2013], which inspires our approach but also has
significant drawbacks and limitations. We extensively discuss Borgers et al. [2013] in in Section B,
where we contrast it with our definitions.

Two works in (algorithmic) game theory touching on informational S&C are Jain et al. [2009] and
Milgrom and Weber [1982]; however, these do not propose general definitions. They are discussed
below.

Somewhat related is the game-theoretic notion of strategic substitutes and complements [Bulow
et al., 1985]. Roughly, these concepts refer to cases where a change in action by one player in a game
results in a response from another that is similar to the first player’s (in the case of complements)
or offsetting (in the case of substitutes). This notion seems relatively unrelated to our definitions
of informational S&C. For one, our definitions focus on the case of a single decisionmaker or single
optimization problem. Also, strategic S&C can be defined in complete-information games, where
there are no signals or information of any kind. However, perhaps future work can discover classes
of games in which the notions are more closely related.

Valuations for items. In contrast to the lack of literature on informational S&C, in the case
of valuation functions for items, substitutability and complementarity have been put on firm formal
foundations, with strong connections between substitutes and existence of equilibria in markets for
goods or matching markets [Kelso Jr and Crawford, 1982, Roth, 1984, Gul and Stacchetti, 1999,
Hatfield and Milgrom, 2005, Ostrovsky, 2008].

In computer science, the literature on optimization has produced strong positive results leverag-
ing substitutable structure. The main example of this is submodularity, which has been connected to
computational tractability throughout theoretical computer science and machine learning [Krause
and Golovin, 2012]. Submodularity, in addition to having nice algorithmic properties, is also rec-
ognized as a natural model of substitutes in (algorithmic) game theory [Lehmann et al., 2001].

This paper draws parallels to such research because our definition of informational substitutes
turns out to correspond formally to submodular valuation functions. We show market equilibrium
results of a similar flavor, but for “information markets”; and we also show algorithmic results of
a similar flavor for the problem we call SIGNALSELECTION, which is the problem of selecting an
optimal set of signals subject to constraints.

However, we emphasize that informational S&C pose challenges that do not arise in the item
setting:

e [tems are modeled as having an a priori innate value. Information is not; its value must arise
from context.
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e Items are modeled as being atomic or indivisible, with no inner structure. In contrast,
information, modeled as e.g. random variables, is defined by inner structure: the probability
distributions from which it is drawn.

e The relationship between items is completely determined by the valuation function in the
context of interest. Concretely, when modeling a set function f : 2{1--m} — R it is usually
not the case in the model that items 3, 7, and k have a special relationship that has an impact
on allowable forms of f. In contrast, in a value-of-information setting, the value of observing
a triple of signals cannot be completely arbitrary; it must depend somehow on correlations
between these signals.

We give an in-depth description of how our definitions overcome these challenges in Section B.

A.0.2 Information in markets

The “efficient markets hypothesis” (EMH) refers to a large set of informal conjectures about how
quickly information is revealed and incorporated into the prices of financial instruments in markets.
For our purposes, a “financial instrument” may be formalized as a security with an uncertain value,
which will be revealed after the close of the market; each share purchased of that security may
then be redeemed for a payout equal to this revealed true value of the security. Concretely, one
can picture a binary security that has value 1 if a certain event occurs and 0 otherwise.

Fama [1970] discussed formalizations of the EMH with varying levels of strength. Kyle [1985]
defined a formal model of financial traders in markets, involving both informed traders and “noise”
traders who are uninformed and essentially trade randomly; this is the current most common model
of such trading in the economics literature. However, formal progress on this question was very slow
until Ostrovsky [2012] showed that, in equilibrium of this model, information is always eventually
aggregated under a certain condition on securities. Formally, this means that the price of a security
converges to its ez post expected value conditioned on the information held by all traders. Ostrovsky
[2012] considered both finite-round and infinite-round markets (with and without discounting), and
considered prediction markets (described below) as well as Kyle’s model. One subtlety that may be
worth pointing out is that, in an infinite-round market without discounting, it is not known that
a Bayes-Nash equilibrium always exists, while this is known for the other cases. Ostrovsky [2012]
showed in all cases that aggregation occurs in any equilibrium, under his “separability” condition
on securities. The condition essentially ensures that, if information is not yet aggregated, then
some participant has information that can be used to make a “useful” trade, i.e. one that makes
money and (therefore) intuitively makes “progress” toward aggregation.

This showed that information is eventually aggregated; but how is it aggregated? It would be
ideal if traders rush to reveal their information, but very bad if they “delay” as long as possible.

Such questions are difficult to address in the economic model of financial markets of Kyle
[1985], Ostrovsky [2012]. Research on the dynamics of strategic trading has made some progress
in the model of prediction markets. These are simplified financial markets in which there are
no uninformed “noise” traders and in which participants generally interact one-at-a-time with a
centralized market maker, who sets prices via a transparent mechanism and subsidizes the market.
Specifically, research on strategic play focuses, as does this paper, on the market scoring rule design
of prediction markets [Hanson, 2003], which are based on proper scoring rules (see e.g. Savage [1971],
Gneiting and Raftery [2007]). However, we note that market scoring rule markets are equivalent, in
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a strategic sense, to more traditional-looking “cost function” based prediction markets Abernethy
et al. [2013].

The following was known about equilibrium in such markets prior to this work, in addition to
Ostrovsky [2012]. Chen et al. [2007] studied the log scoring rule and a particular type of information
structure among the traders, namely, that each trader’s “signal” (information) was distributed
independently of all others’ conditional on the true value of the security. (For a simple example of
such a structure, suppose that the true value of the security is distributed randomly in some way;
then each trader observes this true value plus independent noise.) In this conditionally-independent
case, Chen et al. [2007] showed that the “ideal” outcome does indeed occur in equilibrium: Traders
all rush to reveal their information as early as possible.

Subsequently, Dimitrov and Sami [2008] also studied the log scoring rule but considered other
signal structures, particularly independent signals (that is, unconditionally independent). For a
simple example, suppose each trader observes an i.i.d. random variable, and the true value of the
security equals the sum of all the traders’ observations. Dimitrov and Sami [2008] showed that, in
this case, the “ideal” outcome does not occur. However, when assuming discounting and an infinite
number of trading rounds, Dimitrov and Sami [2008] showed that information is “eventually”
aggregated. This result was generalized to any scoring rule (not just log) by Ostrovsky [2012].
Chen et al. [2007] and Dimitrov and Sami [2008] were combined and extended in Chen et al. [2010].

Then, Gao et al. [2013] revisited the log scoring rule in finite-round markets and considered
the information structure where all traders signals are unconditionally independent. In this case,
Gao et al. [2013] showed that the “worst possible” outcome occurs in equilibrium: Traders all delay
as long as possible before making any trades based on their information. This casts doubt on the
efficient markets hypothesis and suggests, taken in tandem with Chen et al. [2007], that structure
of information is crucial to determining strategic behavior.

A.0.3 Other game-theoretic settings.

In almost any Bayesian extensive-form game, the question of information revelation is relevant.
While we hope that future work may expand the set of topics to which informational substitutes
and complements may apply, in this section, we will focus on the most closely related works, those
that directly touch on S&C, or those for which we show results in Section 3.2.

The model of prediction markets is in some sense the simplest model of strategic information
revelation in dynamic settings. Thus, it is natural that settings such as crowdsourcing contests
are closely related. One such model of crowdsourcing and machine-learning contests appears in
Abernethy and Frongillo [2011], Waggoner et al. [2015]. In that framework, participants iteratively
provide data sets or propose updates to a central machine-learning hypothesis, being rewarded for
the improvement they make to performance on a test set of data. A prediction market can be
seen as a special case. Those works did not address strategic equilibria of the mechanisms they
proposed.

Another related setting is the model of question-and-answer forums in Jain et al. [2009]. That
paper introduced a model where an asker has some value function for “pieces of information”,
which are not modeled directly. Participants can strategically choose when to reveal information.
Jain et al. [2009] identified “substitutes” and “complements” cases in which participants rush (re-
spectively, delay) to provide answers. However, Jain et al. [2009] did not provide any endogenous
model for asker utility or information; the information was modeled almost as discrete items with-
out structure. Hence, it was not clear from that work under what circumstances (if any) pieces of
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information would satisfy their substitutes and complements conditions.

In Section 3.2, we describe implications of our work for results in the above two settings.

More broadly, there are large literatures dealing with signalling in games [Spence, 1973], or
the more recent Bayesian persuasion literature [Kamenica and Gentzkow, 2011, Gentzkow and
Kamenica, 2011, Dughmi and Xu, 2016]. While the models and questions in this area are related,
to our knowledge there is no immediate connection. It may be that future work uncovers connections
of informational S&C to this field, but the literature on persuasion and signalling in games does not
seem to have developed notions of informational substitutes nor tools for addressing the applications
considered in this paper.

Another significant line of work has considered signalling in auctions, e.g. Milgrom [1981],
Milgrom and Weber [1982]. The only paper in this literature that we know to explicitly formalize
a notion of substitutable information is Milgrom and Weber [1982], which considers a common-
value auction with two bidders, one informed and one uninformed, with two signals, each a real-
valued random variable with some positive affiliation with the item’s value. The authors define a
notion of substitutes specific to their context and show that it implies intuitive properties for this
asymmetric-information auction setting. In future work, it would be interesting to see if there is a
formal connection of our definitions to their setting.

A.0.4 Algorithms for information acquisition.

The value of information to a decision problem was formally introduced by Howard [1966] and
is also closely related to the classic problem in statistics of Bayesian experimental design [Lind-
ley, 1956]. Given this perspective, it is natural to consider the problem of acquiring information
under constraints. This problem has historically been investigated from many different angles,
e.g. [Mookerjee and Mannino, 1997]. It is known to be very computationally difficult in some
general settings [Krause and Guestrin, 2009).

A successful recent trend in this area is to leverage submodular structure to apply efficient
approximation algorithms. For instance, an approximation ratio of (1 — 1/e) is obtained by the
greedy algorithm for maximizing a monotone submodular function subject to a cardinality con-
straint. This algorithm or related submodular maximization algorithms were utilized by Krause
and Guestrin [2005b], Guestrin et al. [2005], and a variety of literature since; see Krause and Golovin
[2012] for a survey. In cases where the information is acquired not in a batch but adaptively over
time, based on the information observed so far, the problem (and/or solution) is known as adaptive
submodularity [Asadpour et al., 2008, Golovin and Krause, 2011].

B Defining S&C: intuition, challenges, and historical context

In this section, we describe the intuition, justification, and historical context behind our pro-
posed definitions of informational substitutes and complements (S&C). The formal definitions are
presented more concisely starting in Section 2, to which the reader may skip if uninterested in
background. We focus on the substitutes case; the complements case, where not mentioned, is
analogous.

The only prior attempt at definitions of S&C of which we are aware is Borgers et al. [2013],
which will be introduced shortly. The setting and approach in that paper are very appealing, and
they inspire our approach in this paper. However, there are also key drawbacks that motivate us

56



to diverge from their approach in several ways. We will describe in context the drawbacks and our
approach to overcoming them.

B.0.1 Defining the value of information

Defining informational S&C turns out to be significantly more work than defining substitutes and
complements for valuation functions over items, starting from the very beginning: How does value
arise in the first place? It is generally accepted to model a valuation function over a set U of
goods as some f : 2V — R, without justifying how f(S) arises (perhaps the items are yummy,
shiny, or have other desirable qualities). However, outside of curiosity, it seems that information’s
innate value is more questionable; and furthermore, should depend on its probabilistic structure.
For instance, two signals may be independent or may be highly correlated. How does this relate to
their value?

A solution arises from the observation that information’s value is often determined by the use
to which the information may be put. As in Howard [1966], Borgers et al. [2013], for us the value
of information arises from its utility in the context of a decision problem. We consider a Bayesian
model of information in which there is a prior distribution on the event E of interest and on the
possible pieces of information, called signals. In a decision problem, the agent observes some signals
and then makes a decision d € D, after which the outcome E = e is revealed and the agent’s utility
is u(d,e). Thus (following Bérgers et al. [2013]), we define a value function V" on signals, for
a given decision problem u and prior P, by the expected utility of the agent given that she first
observes A, then takes the optimal action based on that information. Formally,

VeP(A)= E |max E [u(d,e)| A =aq]
a~A | d€ED e~E
Thus, one can compare, for instance, the value V¥ (A;) for observing signal A; alone versus the
value VP (As) for observing signal Ay alone. Note that the marginal value for observing signal
Ay, given that the agent will already observe signal A;, is V¥ (Ay v Ap) — yu.P (A1), where the
notation Ay V A; means to observe both signals (this notation will be explained shortly).

B.0.2 The approach of Borgers et al.

Borgers et al. [2013] proposes the following definition: Given an event E, two signals A; and As
are substitutes if for every decision problem (and associated value function V¥ ),

VP (A)) 4+ Vvef (Ag) > VWP (A v Ay) + VP (L),

where A1 V A, denotes observing both signals, while 1 denotes not observing any signal and
deciding based on the prior.

This definition has two properties that might seem attractive, but turn out to be fatal in many
cases of interest: (a) it does not depend on the particular decision problem, but only on how Ay,
Ay, and E are correlated; (b) it depends only on the values V% (A;), V%P (Ay), of both, and
of neither, and does not depend on any internal structure of A; and A;. We explain why these
properties are problematic and how our definition will differ.

a. Lack of dependence on the decision problem. The problem here is that in a majority
of cases, two signals can turn out to be either substitutes or complements depending on the decision
problem at hand. For example, whether two weather observations are substitutes or complements
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depends on what decision is being made. Temperature and dew point might be considered com-
plements when deciding whether to bring one’s umbrella.® But when deciding, for instance, how
warmly to dress, these two measurements might be considered substitutes since, given one of them,
the other gives relatively less information about the comfort level of warm or cool clothing. For
another example: To a trader deciding whether to invest in a technology index fund (that is, a stock
whose value follows that of the general tech sector), the share prices of two given tech companies
may be substitutable information, since each gives some indication of the current value of tech
stocks. But to a trader deciding which of these two specific companies to invest in, these prices
may be complements, since the decision can be made much more effectively with both pieces of
information than with either alone.

The definition of Borgers et al. [2013] cannot capture such scenarios because it requires two
signals to be substitutes for every possible decision problem. Our solution is to define S&C relative
to both the particular information structure and the particular decision problem.

b. Lack of dependence on the internal structure of the signals. The other con-
cern with the definition of Borgers et al. [2013] is that it only depends on “extreme” values:
VP (A), VP (Ag), VP (A v As), and VP (L). Hence, it ignores the internal structure of A; and
Ao, which can lead to incongruous predictions. For example, suppose that By and By are substitutes
while Cy and C9 are complements. Now consider the signals A1 = (B, C1) and As = (Bg, C3). For
some decision problems, it may be that the B signals are slightly more important and so A; and
Ay seem to be substitutes. For other decision problems, it may be that the C' signals are slightly
more important and A; and As seem to be complements. This is formalized in Example 2.2.3.

To see why this could be problematic for a predictive or useful theory, suppose that an agent will
be able to observe A1, and a seller wishes to sell to that agent the opportunity to observe As as well.
As just argued, one might have defined A and B to be “substitutes” or “complements” depending
on very small fluctuations in the decision problem. But the seller, by “hiding” or “forgetting”
either the By or the (5 component of his signal, can force the signals to become either substitutes
or complements as she desires. A definition that does not account for internal structure may get
such examples completely wrong, e.g. classifying the signals as substitutes when the seller can
make them behave as complements.

We will introduce definitions that account for the internal structure of signals.

B.0.3 Our approach: dependence on context and internal structure

Context. As mentioned above, we will allow the definitions of S&C to depend on the particular
decision or value function V*¥. That is, while Bérgers et al. [2013] defined a particular information
structure P to be substitutes on pairs of signals if V%! satisfied a condition for all u, we will define
a pair (u, P) to be substitutes if V" satisfies a similar condition. This will turn out to be crucial
in all of our applications.

The potential drawback is that it might be difficult to say anything general about when signals
are substitutes or complements; it might seem that one must take things completely on a case-by-
case basis.

8 Accepting the proposition that knowledge of both gives a much better prediction of rain than knowledge of either
alone.
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We make two counterpoints. First, a universal approach may be the wrong goal or “too much
to hope for”. For instance, in the case of items, there is no such optimistic analogue; one does
not consider items that are always substitutes for every valuation function. Despite this, there are
many successful theories leveraging substitutable goods. These approaches start by assuming a
context (e.g. valuation functions) for which the goods are substitutes; similarly, we can consider a
set of signals and only those decision problems for which they are substitutes.

Second, we later give some evidence that we need not take things completely case-by-case. We
seek classes of signals that can be considered substitutes or complements in a broad class of decision
problems. For example, we show that if signals are independent, then they are complements for
any decision problem satisfying a smoothness condition. Our work also gives intuition for which
kinds of signals are more likely to be substitutable or are substitutable in more contexts. And
indeed, one of the exciting questions raised by our work is how the context of a decision problem
and internal structure combine to produce substitutable or complementary features.

Probabilistic structure. We will allow definitions of S&C to depend on the internal structure
of signals. But how? Two signals may be related in complex ways by correlations with each
other and with the event E of interest. Therefore, a more natural analogy than substitutability
of two items may be substitutability of two subsets of items. Consider Lehmann et al. [2001],
which studied valuation functions over sets of items. There, the authors identified a natural “no
complementarities” condition where two sets of items, A; and As, could only be substitutes if all
“pieces” of those subsets were substitutes: no subset of set A; could be complementary to the set
Ao, and vice versa. This turned out to be exactly a requirement that the valuation function be
submodular: that it exhibit diminishing marginal value.

We would also like to capture diminishing marginal value. The challenge that arises is, what is
a marginal “unit” of information? The answer actually may vary by application.

1. In some applications, a “marginal unit” may be an entire signal: Given the current subset
of {A1,..., Ay}, one can either add another A;, or not. This would be appropriate for cases
where our above arguments about internal structure may not apply. For example, perhaps
the seller in an auction does not have the ability, for whatever reason, to process her signals
in any way; she can just choose between allowing each of them to be either broadcast or kept
private. In this paper, we utilize this notion, which will correspond to “weak substitutes”,
in the context of discrete optimization problems where an algorithm must choose between
acquiring different signals. In many contexts, it is impossible to acquire partial signals, so
this is the natural marginal unit. While they may be useful, they also are subject to the
criticisms given above; in many contexts that allow “pieces” of signals, they may not behave
as substitutes or may even behave as complements.

2. Sometimes, a “marginal unit” may be some partial information about a signal, in the form
of a “fact” about its realization. For instance, imagine a commuter learns something about
the barometer reading but not the exact reading; e.g., whether it is above or below 30, or the
measurement rounded to the nearest integer. This application arises when considering pure
strategies in a game, or deterministic “post-processings” of a signal in algorithmic contexts.
The effect of such processing is always to “coarsen” a signal by pooling multiple outcomes
together under one announcement. In the barometer example, all realizations of the signal
below 30 map to the same result, and all realizations above map to the other result; similarly
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when rounding to the nearest integer. If a set of signals exhibits diminishing marginal value
with respect to this notion, we will term them “moderate substitutes”. We actually do not
provide an application for moderate substitutes in this paper, but expect them to be useful
in contexts such as those just described.

3. Finally, a “marginal unit” may be partial information in the form of a noisy “signal about the
signal”. For instance, the commuter may learn the barometer reading plus Gaussian noise. To
see that this notion may be much more fine-grained than the previous one, imagine starting
from the binary barometer example, where the commuter learns whether or not the barometer
is below 30; and now imagine that, with some probability p, this observation is “flipped” from
the correct one. When p = 0, the commuter can be certain that she learns correctly which
outcome is the case (above or below 30). But as p — %, the commuter learns less from

the signal. If a set of signals exhibits diminishing marginal value even with respect to such

partial information — for instance, diminishing marginal value as p decreases from % to 0 —
then we term them “strong substitutes”. In applications where, for instance, the barometer
observation is controlled by a strategic agent whose strategy consists of a “garbling” of that

observation, this will be a useful notion of marginal information.

We formalize these marginal units of information using lattices of signals: sets of signals with a
partial order = corresponding to “informativeness” and satisfying some natural conditions. While
our proposed uses for them here are quite new, the lattices we use, or closely related concepts, are
relatively classical. For weak substitutes, we consider the lattice of subsets of signals, with partial
order given by set containment; this corresponds directly to subsets of goods and the notion of
substitutes is essentially the same.

For moderate substitutes, we utilize a variant of Aumann’s classic model of information in
Bayesian games [Aumann, 1976], in which signals correspond to partitions on a ground state of the
world. To our knowledge, although it is known that Aumann’s signals form a lattice (because the
space of partitions do), they have not been used to formalize marginal units of information. One
difference in the variant we propose is that the ground states only determine the signals, not the
event E or any other pieces of information; this makes our model much more useful for formalizing
marginal pieces of information because the ground states only contain information about the signals.

For strong substitutes, we extend Aumann’s model to capture randomized “garblings” of signals.
Although this is not the model normally used in that context, the idea and intuition is extremely
similar to Blackwell’s criterion or partial ordering on signals [Blackwell, 1953]. One major difference
is that in our model, there is a particular event E of interest and signals are ordered according
to informativeness about that event, rather than pure informativeness. Also, the use of Aumann’s
partition model allows our signals to form a lattice.

B.0.4 Capturing “diminishing” marginal value

Luckily, once we have placed a lattice structure on signals, we can apply a now-classic criterion for
diminishing marginal value: submodularity. Often, submodularity is a condition for functions on
subsets, e.g. f: 2"t 5 R which is submodular if an element ¢’s “marginal contribution” to S,
f(SU{i})— f(9), is decreasing as elements are added to S. This is a widely-used model for substi-
tutability of discrete, indivisible items [Lehmann et al., 2001]. The same goes for supermodularity,
increasing marginal value, and complementary items.
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The final piece of our puzzle will be to utilize submodularity and supermodularity, and exten-
sions, to capture diminishing marginal value and increasing marginal value respectively. This is
formalized in Section 2.
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