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Abstract. The problem of analyzing the effect of privacy concerns on
the behavior of selfish utility-maximizing agents has received much at-
tention lately. Privacy concerns are often modeled by altering the utility
functions of agents to consider also their privacy loss [24,13,19,4]. Such
privacy aware agents prefer to take a randomized strategy even in very
simple games in which non-privacy aware agents play pure strategies.
In some cases, the behavior of privacy aware agents follows the frame-
work of Randomized Response, a well-known mechanism that preserves
differential privacy.

Our work is aimed at better understanding the behavior of agents in
settings where their privacy concerns are explicitly given. We consider a
toy setting where agent A, in an attempt to discover the secret type of
agent B, offers B a gift that one type of B agent likes and the other type
dislikes. As opposed to previous works, B’s incentive to keep her type
a secret isn’t the result of “hardwiring” B’s utility function to consider
privacy, but rather takes the form of a payment between B and A. We
investigate three different types of payment functions and analyze B’s
behavior in each of the resulting games. As we show, under some pay-
ments, B’s behavior is very different than the behavior of agents with
hardwired privacy concerns and might even be deterministic. Under a
different payment we show that B’s BNE strategy does fall into the
framework of Randomized Response.

1 Introduction
In recent years, as the subject of privacy becomes an increasing concern, many
works have discussed the potential privacy concerns of economic utility-maximizing
agents. Obviously, utility-maximizing agents are worried about the effect of re-
vealing personal information in the current game on future transactions, and
wish to minimize potential future losses. In addition, some agents may simply
care about what some outside observer, who takes no part in the current game,
believes about them. Such agents would like to optimize the effect of their be-
havior in the current game on the beliefs of that outside observer. Yet specifying
the exact way in which information might affect the agents’ future payment or
an outside observer’s beliefs is a complicated and intricate task.
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Differential privacy (DP), a mathematical model for privacy, developed for
statistical data analysis [9,8], avoids the need for such intricate modeling by
providing a worst-case bound on an agents’ exposure to privacy-loss. Specifically,
by using a ε-differentially private mechanism, agents can guarantee that the
belief of any observer about them changes by no more than a multiplicative
factor of eε ≈ 1 + ε once this observer sees the outcome of the mechanism [7] .
Furthermore, as pointed out in [13,19], using a ε-differentially private mechanism
the agents guarantee that, in expectation, any future loss increases by no more
than a factor of eε−1 ≈ ε. A recent line of work [24,13,19,4] has used ideas from
differential privacy to model and analyze the behavior of privacy-awareness in
game-theoretic settings. The aforementioned features of DP allow these works
to bypass the need to model future transactions. Instead, they model privacy
aware agents as selfish agents with utility functions that are “hardwired” to
trade off between two components: a (positive) reward from the outcome of the
mechanism vs a (negative) loss from their non-private exposure. This loss can be
upper-bounded using DP, and hence in some cases can be shown to be dominated
by the reward (of carefully designed mechanisms), showing that privacy concerns
don’t affect an agent’s behavior.

However, in other cases, the behavior of privacy-aware agents may differ
drastically from the behavior of classical, non-privacy aware agents. For example,
consider a toy-game in which B tells A which of the two free gifts that A offers
(or coupons as we call it, for reasons to be explained later) B would like to
receive. We characterize B using one of two types, 0 or 1; where type 0 prefers
the first gift and type 1 prefers the second one. (This is a rephrasing of the
“Rye or Wholewheat” game discussed in [19].) Therefore it is simple to see
that a non-privacy-aware agent always (deterministically) asks for the gift that
matches her type. In contrast, if we model the privacy loss of a privacy-aware
agent using DP as in the work of Ghosh and Roth [13] (and the value of the
coupon is large enough), a privacy-aware agent takes a randomized strategy.
(See Section 2.2.) Specifically, the agent plays Randomized Response, a standard
differentially private mechanism that outputs a random choice slightly biased
towards the agent’s favorable action.

However, it was argued [19,4] that it is not realistic to use the worst-case
model of DP to quantify the agent’s privacy loss and predict her behavior. Dif-
ferential privacy should only serve as an upper bound on the privacy loss, whereas
the agent’s expected privacy loss can (and should in fact) be much smaller —
depending on the agent’s predictions regarding future events, adversary’s prior
belief about her, the types and strategies of other agents, and the random choices
of the mechanism and of other agents. As discussed above, these can be hard to
model, so it is tempting to use a worst-case model like differential privacy.

But what happens if we can formulate the agent’s future transactions? What
if we know that the agent is concerned with the belief of a specific adversary, and
we can quantify the effects of changes to that belief? Is the behavior of a classical
selfish agent in that case well-modeled by such a “DP-hardwired” privacy-aware
agent? Will she even randomize her strategy? In other words, we ask:



What is the behavior of a selfish utility-maximizing agent in a setting
with clear privacy costs?

More specifically, we ask whether we can take the above-mentioned toy-game
and alter it by introducing payments between A and B such that the behav-
ior of a privacy-aware agent in the toy-game matches the behavior of classical
(non-privacy aware) agent in the altered game. In particular, in case B takes a
randomized strategy — does her behavior preserve ε-differential privacy, and for
what value of ε? The study of these questions may also provide insights relevant
for traditional, non-game-theoretic uses of differential privacy — helping us un-
derstand how tightly differential privacy addresses the concerns of data subjects,
and thus providing guidance in the setting of the privacy parameter ε or the use
of alternative, non-worst-case variants of differential privacy (such as [1]).

Our model. In this work we consider multiple games that model an interaction
between an agent which has a secret type and an adversary whose goal is to
discover this type. Though the games vary in the resulting behavior of the agents,
they all follow a common outline which is similar to the toy game mentioned
above. Agent A offers B a free coupon, that comes in one of two types {0, 1}.
Agent B has a secret type t ∈ {0, 1} chosen from a known prior (D0, D1), such
that a type-t agent has positive utility ρt for type-t coupon and zero utility for
a type-(1 − t) coupon. And so the game starts with B sending A a signal t̂
indicating the requested type of coupon. (Formally, B’s utility for the coupon
is ρt1[t̂=t] for some parameters ρ0, ρ1.) Following this interaction, agent C, who

viewed the signal t̂ that B sent, challenges B into a game — with C taking action
t̃ and incurring a payment from B of P (t̃, t). To avoid the need to introduce a
third party into the game, we identify C with A.1 Figure 1 gives a schematic
representation of the game’s outline.

We make a few observations of the above interaction. We aim to model a
scenario where B has the most incentive to hide her true type whereas A has the
most incentive to discover B’s type. Therefore, all of the payments we consider
have the property that if B’s type is t∗ then t∗ = arg maxt̃ P (t̃, t∗). Furthermore,
the game is modeled so that the payments are transferred from B to A, which
makes A’s and B’s goals as opposite as possible. (In fact, past the stage where
B sends a signal t̂, we have that A and B plays a zero-sum game.) We also note
that A and B play a Bayesian game (in extensive form) as A doesn’t know the
private type of B, only its prior distribution. We characterize Bayesian Nash
Equilibria (BNE) in this paper and will show that in each game, the BNE is
unique except when parameters of the game satisfy certain equality constraints.
It is not difficult to show that the strategies at every BNE of our games are part
of a Perfect Bayesian Equilibrium (PBE), i.e. a subgame-perfect refinement of
the BNE. However, we focus on BNE in this paper as the equilibrium refinement
doesn’t bring any additional insight to our problem.

1 Hence the reason for the name “The Coupon Game”. We think of A as G – an “evil”
car-insurance company that offers its client a coupon either for an eyewear store or
for a car race; thereby increasing the client’s insurance premium based on either the
client’s bad eyesight or the client’s fondness for speedy and reckless driving.



Fig. 1. A schematic view of the privacy game we model.

Our results and paper organization. First, in Section 2, following preliminar-
ies we discuss the DP-hardwired privacy-aware agent as defined by Ghosh and
Roth [13] and analyze her behavior in our toy game. Our analysis shows that
given sufficiently large coupon valuations ρt, both types of B agent indeed play
Randomized Response. We also discuss conditions under which other models of
DP-hardwired privacy-aware agents play a randomized strategy.

Following preliminaries, we consider three different games. These games fol-
low the general coupon-game outline, yet they vary in their payment function.
The discussion for each of the games follows a similar outline. We introduce the
game, then analyze the two agents’ BNE strategies and see if the strategy of the
B agent is indeed randomized or pure (and in case it is randomized — whether
or not it follows Randomized Response for some value of ε). We also compare the
coupon game to a “benchmark game” where B takes no action and A guesses
B’s type without any signal from B. Investigating whether it is even worth while
for A to offer such a coupon, we compare A’s profit between the two games.2

The payment functions we consider are the following.

1. In Section 3 we consider the case where the payment function is given by
a proper scoring rule. Proper scoring rules allows us to quantify the B’s
cost to any change in A’s belief about her type. We show that in the case
of symmetric scoring rules (scoring rules that are invariant to relabeling of
event outcomes) both types of B agent follow a randomized strategy that
causes A’s posterior belief on the types to resemble Randomized Response.
That is, initially A’s belief on B being of type-0 (resp. type-1) is D0 (resp.
D1); but B plays in a way such that after viewing the t̂ = 0 signal, A’s belief
that B is of type-0 (resp. type-1) is 1+ε

2 (resp. 1−ε
2 ) for some value of ε (and

vice-versa in the case of the t̂ = 1 signal with the same ε).
2. In Section 4 we consider the case where the payments between A and B

are the result of A guessing correctly B’s type. A views the signal t̂ and
then guesses a type t̃ ∈ {0, 1} and receives a payment of 1[t̃=t] from B.
This payment models the following viewpoint of B’s future losses: there is a
constant gap (of one “unit of utility”) between interacting with an agent that
knows B’s type to an agent that does not know her type. We show that in this
case, if the coupon valuations are fixed as ρ0 and ρ1, then at least one type of
B agent plays deterministically. However, if B’s valuation for the coupon is

2 The benchmark game is not to be confused with the toy-game we discussed earlier
in this introduction. In the toy game, A takes no action and B decides on a signal.
In the benchmark game, B takes no action and A decides which action to take based
on the specific payment function we consider in each game.



sampled from a continuous distribution, then A’s strategy effectively dictates
a threshold with the following property: any B agent whose valuation for the
coupon is below the threshold lies and signals t̂ = 1− t, and any agent whose
valuation is above the threshold signals truthfully t̂ = t. Hence, an A agent
who does not know B’s valuation thinks of B as following a randomized
strategy.

3. In Section 5 we consider a variation of the previous game where A also has the
option to opt out and not challenge B into a payment game — to report ⊥
and in return get no payment (i.e., P (⊥, t) = 0). We show that in such
a game, under a very specific setting of parameters, the only BNE is such
where both types of B agent take a randomized strategy. Under alternative
settings of the game’s parameters, the strategy of B is such that at least one
of the two types plays deterministically.

Future directions are deferred to the full version of the paper, due to space lim-
itation. We find it surprising to see how minor changes to the privacy payments
lead to diametrically different behaviors. In particular, we see the existence of a
threshold phenomena. Under certain parameter settings in the game we consider
in item 3 above, we have that if the value of the coupon is above a certain thresh-
old then at least one of the two types of B agent plays deterministically; and if
the value of the coupon is below this threshold, B randomizes her behavior s.t.
t̂ = t w.p. close to 1

2 .

1.1 Related Work

The study of the intersection between mechanism design and differential privacy
began with the seminal work of McSherry and Talwar [18], who showed that an
ε-differentially private mechanism is also ε-truthful. The first attempt at defining
a privacy-aware agent was of Ghosh and Roth [13] who quantified the privacy
loss using a linear approximation vi · ε where vi is an individual parameter and ε
is the level of differential privacy that a mechanism preserves. Other applications
of differentially privacy mechanisms in game theoretic settings were studied by
Nissim et al [20]. The work of Xiao [24] initiated the study of mechanisms that
are truthful even when you incorporate the privacy loss into the agents’ util-
ity functions. Xiao’s original privacy loss measure was the mutual information
between the mechanism’s output and the agent’s type. Nissim et al [19] (who
effectively proposed a preliminary version of our coupon game called “Rye or
Wholewheat”) generalized the models of privacy loss to only assume that it is
upper bounded by vi · ε. Chen et al [4] proposed a refinement where the pri-
vacy loss is measured with respect to the given input and output. Fleischer and
Lyu [11] considered the original model of agents as in Ghosh and Roth [13] but
under the assumption that vi, the value of the privacy parameter of each agent,
is sampled from a known distribution.

Several papers in economics look at the potential loss of agents from hav-
ing their personal data revealed. In fact, one folklore objection to the Vickrey
auction is that in a repeated setting, by providing the sellers with the bidders’
true valuations for the item, the bidders subject themselves to future loss should



the seller prefer to run a reserved-price mechanism in the future. In the con-
text of repeated interaction between an agent and a company, there have been
works [6,2] studying the effect of price differentiation based on an agent allowing
the company to remember whether she purchased the same item in the past.
Interestingly, strategic agents realize this effect and so they might “haggle” —
reject a price below their valuation for the item in round 1 so that they’d be
able to get even lower price in round 2. In that sense, the fact that the agents
publish their past interaction with the company actually helps the agents. Other
work [3] discusses a setting where a buyer sequentially interacts with two differ-
ent sellers, and characterizes the conditions under which the first seller prefers
not to give the buyer’s information to the second seller. Concurrently with our
work, Gradwohl and Smorodinsky [15], whose motivation is to analyze the effect
of privacy concerns, introduce a framework of games in which an agent’s utility
is affected by both her actions and how her actions are perceived by a third
party.

The privacy games that we propose and analyze in this paper fall into the
class of signaling games [17], where a sender (B in our game) with a private
type sends a message (i.e. a signal) to a receiver (A in our game) who then
takes an action. The payoffs of both players depend on the sender’s message,
the receiver’s action, and the sender’s type. Signaling games have been widely
used in modeling behavior in economics and biology. The focus is typically on
understanding when signaling is informative, i.e. when the message of the sender
allows the receiver to infer the sender’s private type with certainty, especially in
settings when signaling is costly (e.g. Spence’s job market signaling game [21]).
In our setting, however, informative signaling violates privacy. We are interested
in characterizing when the sender plays in a way such that the receiver cannot
infer her type deterministically.

2 Preliminaries
2.1 Equilibrium Concept

We model the games between A and B as Bayesian extensive-form games. How-
ever, instead of using the standard Perfect Bayesian Equilibrium (PBE), which
is a refinement of Bayesian Nash Equilibrium (BNE) for extensive-form games,
as our solution concept, we analyze BNE for our games. It can be shown that all
of the BNEs considered in our paper can be “extended” to PBEs (by appropri-
ately defining the beliefs of agent A about agent B at all points in the game). We
thus avoid defining the more subtle concept of PBE as the refinement doesn’t
provide additional insights for our problem. Below we define BNE.

A Bayesian game between two agents A and B is specified by their type
spaces (ΓA, ΓB), a prior distribution Π over the type spaces (according to which
nature draws the private types of the agents), sets of available actions (CA, CB),
and utility functions, ui : ΓA × ΓB × CA × CB → R, i ∈ {A,B}. A mixed or
randomized strategy of agent i maps a type of agent i to a distribution over her
available actions, i.e. σi : Γi → ∆(Ci), where ∆(Ci) is the probability simplex
over Ci.



Definition 1. A strategy profile (σA, σB) is a Bayesian Nash Equilibrium if

E[ui(Ti, T−i, σi(Ti), σ−i(T−i))|Ti = ti] ≥ E[ui(Ti, T−i, σ
′
i(Ti), σ−i(T−i))|Ti = ti]

for all i ∈ {A,B}, all types ti ∈ Γi occurring with positive probability, and all
strategies σ′i, where σ−i and T−i denote the strategy and type of the other agent
respectively and the expectation is taken over the randomness of agent type T−i
and the randomness of the strategies, σi, σ−i and σ′i.

2.2 Differential Privacy
In order to define differential privacy, we first need to define the notion of
neighboring inputs. Inputs are elements in Xn for some set X , and two in-
puts I, I ′ ∈ Xn are called neighbors if the two are identical on the details of all
individuals (all coordinates) except for at most one.

Definition 2 ([9]). An algorithm ALG which maps inputs into some range R
satisfies ε-differential privacy if for all pairs of neighboring inputs I, I ′ and for
all subsets S ⊂ R it holds that Pr[ALG(I) ∈ S] ≤ eεPr[ALG(I ′) ∈ S].

One of the simplest algorithms that achieve ε-differential privacy is called Ran-
domized Response [16,10], which dates back to the 60s [22]. This algorithm is
best illustrated over a binary input, where each individual is represented by a
single binary bit (therefore a neighboring instance is a neighbor in which one
individual is represented by a different bit), Randomized Response works by
perturbing the input. For each individual i represented by the bit bi, the al-
gorithm randomly and independently picks a bit b̂i s.t. Pr[b̂i = bi] = 1+ε

2 for
some ε ∈ [0, 1). It follows from the definition of the algorithm that it satisfies
ln( 1+ε

1−ε ) ≈ 2ε-differential privacy. Randomized Response is sometimes presented

as a distributed algorithm, where each individual randomly picks b̂i locally, and
reports b̂i publicly. Therefore, it is possible to view this work as an investigation
of the type of games in which selfish utility-maximizing agents truthfully follow
Randomized Response, rather than sending some arbitrary bit as b̂i.

In this work, we define certain games and analyze the behavior of the two
types of B agent in the BNE of these games. And so, denoting B’s strategy
as σB , we consider the implicit algorithm σB(t) that tells a type-t agent what
probability mass to put on the 0-signal and on the 1-signal. Knowing B’s strategy
σB , we say that B satisfies ln(Xgame)-differential privacy where3

Xgame
def
= Xgame(σB) = max

t,t̂∈{0,1}

(
Pr[σB(t) = t̂]

Pr[σB(1− t) = t̂]

)
We are interested in finding settings where Xgame(σ

∗
B) is finite, where σ∗B denotes

B’s BNE strategy. We say B plays a Randomized Response strategy in a game
whenever her BNE strategy σ∗B satisfies Pr[σ∗B(0) = 0] = Pr[σ∗B(1) = 1] = p for
some p ∈ [1/2, 1).

3 We use the convention 0
0

= 1.



Privacy-Aware Agents. The notion of privacy-aware agents has been devel-
oped through a series of works [24,13,19,4]. The utility function of our privacy-
aware agent B is of the form uB = uoutB − uprivB . The first term, uoutB is the

utility of agent B from the mechanism. The second term, uprivB , represents the

agent’s privacy loss. The exact definition of uprivB (and even the variables uprivB

depends on) varies between the different works mentioned above, but all works
bound the privacy-loss of an agent that interacts with a mechanism that satisfies
ε-differential privacy by uprivB ≤ v · ε for some v > 0. Here we argue about the
behavior of a privacy-aware agent with the maximal privacy loss function, which
is the type of agent considered by Ghosh and Roth [13] (i.e., the agent’s privacy
loss when interacting with a mechanism that satisfies ε-differential privacy is
exactly v · ε for some v > 0).

Recall our toy game: B sends a signal t̂ and gets a coupon of type t̂. Therefore,
the outcome of this simple game is t̂, precisely the action that B takes. B’s type
is picked randomly to be 0 w.p. D0 and 1 w.p. D1, and a B agent of type t has
valuation of ρt for a coupon of type t. Therefore, in this game uoutB = ρt1[t̂=t].
The mechanism we consider is σ∗B , B’s utlity-maximizing strategy, which we
think of as the implicit algorithm that tells a type-t agents what probability
mass to put on sending the t̂ = 0 signal and what mass to put on the t̂ = 1
signal. As noted above, this strategy satisfies ln(Xgame)-differential privacy, and

so uprivB (σ∗B) = v · ln(Xgame) for some parameter v > 0. Assuming D0ρ0 6=
D1ρ1, our proof shows that this privacy-aware agent chooses essentially between
two alternatives in our toy game: either both types take the same deterministic
strategy and send the same signal (Pr[σ∗B(0) = b] = Pr[σ∗B(1) = b] = 1 for some
b ∈ {0, 1}); or the agent randomizes her behavior and plays using Randomized
Response: Pr[σ∗B(0) = 0] = Pr[σ∗B(1) = 1] ∈ [ 12 , 1). We show that for sufficiently
large values of the coupon the latter alternative is better than the first.

Theorem 3. Let B be a privacy-aware agent, whose privacy loss is given by
v ln(Xgame) for some v > 0. Assume that there exists an α > 0 s.t. for sufficiently
large values of ρ0, ρ1 it holds that min{ρ0, ρ1} ≥ α · (ρ0 + ρ1). Then, the unique
strategy σ∗B that maximizes B’s utility is randomized and satisfies: Pr[σ∗B(0) =
0] = Pr[σ∗B(1) = 1] = p∗ for some p∗ ∈ [ 12 , 1).

The proof is deferred to the full version of the paper. The proof of Theorem 3
also applies to some alternative models of a privacy-aware agent. In addition
to Theorem 3, we also analyze, for completeness, an alternative scenario where
type 0 and type 1 are two competing agents. Observe that this is no longer a
Bayesian game with a single player but rather a standard complete-information
game with two players. We show that this game also has NEs where both types
play randomized strategies that follow Randomized Response (i.e.,Pr[σ∗B(0) =
0] = Pr[σ∗B(1) = 1]) > 1

2 ).

3 The Coupon Game with Scoring Rules Payments
In this section, we model the payments between A and B using a proper scoring
rule (see below). This model is a good “first-attempt” model for the following two
reasons. (i) Proper scoring rules assign profit to A based on the accuracy of her



belief, so A has incentives to improve her prior belief on B’s type. (ii) As we show,
in this model it is possible to quantify the B’s trade-off between an ε-change in
the belief and the cost that B pays A. In that aspect, this model gives a clear
quantifiable trade-off that explains what each additional unit of ε-differential
privacy buys B. Interestingly, proper scoring rules were recently applied in the
context of differential privacy [12] (yet in a very different capacity).

Proper scoring rules (see surveys [23,14]) were devised as a method to elicit
experts to report their true prediction about some random variable. For a {0, 1}-
valued random variable X, an expert is asked to report a prediction x ∈ [0, 1]
about the probability that X = 1. We pay her f1(x) if indeed X = 1 and
f0(x) otherwise. A proper scoring rule is a pair of functions (f0, f1) such that
arg maxx Et←X [ft(x)] = Pr[X = 1]. Hence a risk-neutral agent’s best strategy
is to report x = Pr[X = 1]. Most frequently used proper scoring rules are
symmetric (or label-invariant) rules, where ∀x, f1(x) = f0(1 − x) (also referred
to as neutral scoring rules in [5]). With symmetric proper scoring rules, the
payment to an expert reporting x as the probability of a random variable X to
be 1, is identical to the payment of an expert reporting (1−x) as the probability
of the random variable (1−X) to be 1. Additional background regarding proper
scoring rules is deferred to the full version of this paper.

3.1 The Game with Scoring Rule Payments
We now describe the game, and analyze its BNE. In this game A interacts with
a random B from a population that has D0 fraction of type 0 agents and D1

fraction of type 1 agents. Wlog we assume throughout Sections 3, 4 and 5 that
D0 ≥ D1. A aims to discover B’s secret type. She has utility that is directly
linked to her posterior belief on B’s type and A reports her belief that B is
of type 1. A’s payments are given by a proper scoring rule, composed of two
functions (f0, f1), so that after reporting a belief of x, a B agent of type t pays
ft(x) to A.

A benchmark game. First consider the following straight forward (and more
boring) game where B does nothing, A merely reports x – her belief that B is
of type 1. In this game A gets paid according to a proper scoring rule — i.e., A

gets a payment of FD1(x)
def
= D0f0(x) +D1f1(x) in expectation. Since (f0, f1) is

a proper scoring rule, A maximizes her expected payment by reporting x = D1.

So, in this game A gets paid g(D1)
def
= fD1

(D1) in expectation, whereas B’s
expected cost is g(D1). (Alternatively, a B agent of type 0 pays f0(D1) and a B
agent of type 1 pays f1(D1).)

The full game. We now turn our attention to a more involved game. Here A,
aiming to have a more accurate posterior belief on B’s type, offers B a coupon.
Agents of type t prefer a coupon of type t. And so, B chooses what type to report
A, who then gives B the coupon and afterwards makes a prediction about B’s
probability of being of type 1. The formal stages of the game are as follows.

0. B’s type, t, is drawn randomly with Pr[t = 0] = D0 and Pr[t = 1] = D1.
1. B reports to A a type t̂ = σB(t) and receives utility of ρt if indeed t̂ = t. We

assume throughout this section that ρ0 = ρ1 = ρ.



2. A reports a prediction x, representing Pr[t = 1 | σB(t) = t̂], and receives a
payment from B of ft(x).

Theorem 4. Consider the coupon game with payments in the form of a sym-
metric proper scoring rule and with the following added assumption about the
value of the coupon: f1(D0) − f1(D1) < ρ < f1(1) − f1(0) = f0(0) − f0(1).
The unique BNE strategy of B in this game, denoted σ∗B, satisfies that Pr[t =
0 | σ∗B(t) = 0] = Pr[t = 1 | σ∗B(t) = 1].

Note that a Randomized Response strategy σB forB would instead have Pr[σB(0) =
0] = Pr[σB(1) = 1]. This condition is different from the condition in Theorem 4
when Pr[t = 0] 6= Pr[t = 1] (i.e., D0 6= D1). The proof of Theorem 4 is in the
full version of this paper, where we also compare A’s profit in the benchmark
game to her profit from her BNE strategy in the full game.

4 The Coupon Game with the Identity Payments
In this section, we examine a different variation of our initial game. As always,
we assume that B has a type sampled randomly from {0, 1} w.p. D0 and D1

respectively, and wlog D0 ≥ D1. Yet this time, the payments between A and B
are given in the form of a 2 × 2 matrix we denote as M . This payment matrix
specifies the payment from B to A in case A “accuses” B of being of type
t̃ ∈ {0, 1} and B is of type t. In general we assume that A strictly gains from
finding out B’s true type and potentially loses otherwise (or conversely, that a
B agent of type t strictly loses utility if A accuses B of being of type t̃ = t and
potentially gains money if A accuses B of being of type t̃ = 1− t). In this section
specifically, we consider one simple matrix M – the identity matrix I2×2. Thus,
A gets utility of 1 from correctly guessing B’s type (the same utility regardless
of B’s type being 0 or 1) and 0 utility if she errs.

4.1 The Game and Its Analysis

The benchmark game. The benchmark for this work is therefore a very simple
“game” where B does nothing, A guesses a type and B pays A according to M .
It is clear that A maximizes utility by guessing t̃ = 0 (since D0 ≥ D1) and so
A gains in expectation D0; where an agent B of type t = 0 pays 1 to A, and an
agent B of type t = 1 pays 0 to A.

The full game. Aiming to get a better guess for the actual type of B, we now
assume A first offers B a coupon. As before, B gets a utility of ρt from a coupon
of the right type and 0 utility from a coupon of the wrong type. And so, the
game takes the following form now.

0. B’s type, denoted t, is chosen randomly, with Pr[t = 0] = D0 and Pr[t =
1] = D1.

1. B reports a type t̂ = σB(t) to A. A in return gives B a coupon of type t̂.
2. A accuses B of being of type t̃ = σA(t̂) and B pays 1 to A if indeed t̃ = t.

And so, the utility of agent A is uA = 1[t̃=t]. The utility of agent B is a
summation of two factors – reporting the true type to get the right coupon and
the loss of paying A for finding B’s true type. So uB = ρt1[t̂=t] − 1[t̃=t].



Theorem 5. In the coupon game with payments given by the identity matrix
with ρ0 6= ρ1, any BNE strategy of B is pure for at least one of the two types of B
agent. Formally, for any BNE strategy of B, denoted σ∗B, there exist t, t̂ ∈ {0, 1}
s.t. Pr[σ∗B(t) = t̂] = 1.

In the case where ρ0 = ρ1 then B has infinitely many randomized BNE strategies,
including a BNE strategy σ∗B s.t. 1

2 ≤ Pr[σ∗B(0) = 0] = Pr[σ∗B(1) = 1] < 1
(Randomized response).

4.2 Continuous Coupon Valuations

We now consider the same game with the same payments, but under a different
setting. Whereas before we assumed the valuations that the two types of B
agents have for the coupon are fixed (and known in advance), we now assume
they are not fixed. In this section we assume the existence of a continuous prior

over ρ, where each type t ∈ {0, 1} has its own prior, so CDF0(x)
def
= Pr[ρ <

x | t = 0] with an analogous definition of CDF1(x). We use CDFB to denote the
cumulative distribution function of the prior over ρ (i.e., CDFB(x) = Pr[ρ < x] =
D0CDF0(x)+D1CDF1(x)). We assume the CDF is continuous and so Pr[ρ = y] =
0 for any y. Given any z ≥ 0 we denote CDF−1B (z) the set {y : CDFB(y) = z}.

Theorem 6. In every BNE (σ∗A, σ
∗
B) of the coupon game with identity pay-

ments, where D0 6= D1 and the valuations of the B agents for the coupon are
taken from a continuous distribution over [0,∞), the BNE-strategies are as fol-
lows.

– Agent A always plays t̃ = 0 after viewing the t̂ = 0 signal (i.e., Pr[σ∗A(0) =
0] = 1); and plays t̃ = 1 after viewing the t̂ = 1 signal with probability
y∗ (i.e., Pr[σ∗A(1) = 1] = y∗), where y∗ is any value in CDF−1B (D1) when
Pr[ρ < 1] ≥ D1 and y∗ = 1 when Pr[ρ < 1] < D1.

– Agent B reports truthfully (sends the signal t̂ = t) whenever her valuation for
the coupon is greater than y∗, and lies (sends the signal t̂ = 1− t) otherwise.
That is, for every t ∈ {0, 1} and ρ ∈ [0,∞), we have that if ρ > y∗ then
Pr[σ∗B(t) = t] = 1 and if ρ < y∗ then Pr[σ∗B(t) = t] = 0.

Due to space constraints, this analysis is deferred to the full version of the paper.
5 The Coupon Game with an Opt Out Strategy
In this section, we consider a version of the game considered in Section 4. The
revised version of the game we consider here is very similar to the original game,
except for A’s ability to “opt out” and not guess B’s type.

In this section, we consider the most general form of matrix payments. We
replace the identity-matrix payments with general payment matrix M of the

form M =

[
M0,0 −M0,1

−M1,0 M1,1

]
with the (i, j) entry in M means A guessed t̃ = i

and B’s true type is t = j, and so B pays A the amount detailed in the (i, j)-
entry. We assume M0,0,M0,1,M1,0,M1,1 are all non-negative.

Indeed, when previously considering the identity matrix payments, we as-
sumed the for A, realizing that B has type t = 0 is worth just as much as finding
B has type t = 1. But it might be the case that finding a person of t = 1 should



be more worthwhile for A. For example, type t = 1 (the minority, since we always
assume D0 ≥ D1) may represent having some embarrassing medical condition
while type t = 0 representing not having it. Therefore, M1,1 can be much larger
than M0,0, but similarly M1,0 is probably larger than M0,1. (Falsely accusing B
of being of the embarrassing type is costlier than falsely accusing a B of type 1
of belonging to the non-embarrassing majority.) Our new payment matrix still
motivates A to find out B’s true type — A gains utility by correctly guessing
B’s type, and loses utility by accusing B of being of the wrong type.

The “strawman” game. First, consider a simple game where B makes no move (A
offers no coupon) andA tries to guessB’s type without getting any signal fromB.
Then A has three possible pure strategies: (i) guess that B is of type 0; (ii) guess
that B is of type 1; and (iii) guess nothing. In expectation, the outcome of option
(i) is D0M0,0−D1M0,1 and the outcome of option (ii) is D1M1,1−D0M1,0. If the
parameters of M are set such that both options are negative then A’s preferred
strategy is to opt out and gain 0. We assume throughout this section that indeed
the above holds. (Intuitively, this assumption reflects the fact that we don’t make
assumptions about people’s type without first getting any information about
them.) So we have

M0,0

M0,1
<
D1

D0
, and

M1,1

M1,0
<
D0

D1
(1)

A direct (and repeatedly used) corollary of Equation (1) is that
M0,0

M0,1
<

M1,0

M1,1
.

The full game. We now give the formal description of the game.

0. B’s type, denoted t, is chosen randomly, with Pr[t = 0] = D0 and Pr[t =
1] = D1.

1. B reports a type t̂ to A. A in return gives B a coupon of type t̂.
2. A chooses whether to accuse B of being of a certain type, or opting out.

– If A opts out (denoted as t̃ = ⊥), then B pays A nothing.
– If A accuses B of being of type t̃ then: if t̃ = t then B pays Mt,t to A,

and if t̃ = 1− t then B pays −M1−t,t to A (or A pays M1−t,t to B).

Introducing the option to opt out indeed changes significantly the BNE strategies
of A and B.

Theorem 7. If we have that D2
0M0,0M1,0 = D2

1M0,1M1,1 and the parameters
of the game satisfy the following condition:

0 < ρ1M1,0 − ρ0M1,1 < M0,1M1,0 −M0,0M1,1

0 < ρ0M0,1 − ρ1M0,0 < M0,1M1,0 −M0,0M1,1 (2)

then the unique BNE strategy of B, denote σ∗B, is such that B plays Randomized
Response: 1

2 ≤ Pr[σ∗B(0) = 0] = Pr[σ∗B(1) = 1] < 1.

Proving Theorem 7 is the goal of this section. The proof itself is deferred to the
full version of this paper, where we also give a complete summary of the various
BNEs of this game. We detail 6 different cases that cover all possible settings



of the game. Each of these 6 cases is defined by a different feasibility condition.
These conditions guarantee that A is able to find a strategy that cause at least
one of the two types of B agent to be indifferent as to the signal she sends.

The feasibility condition detailed in Equation (2) can be realized starting with
any matrix M satisfying M0,0M1,1 < M0,1M1,0 (which is a necessary condition
derived from Equation (1)), which intuitively can be interpreted as having a
wrong “accusation” being costlier than the gain from a correct “accusation”
(on average and in absolute terms). Given such M , one can set D0 and D1

s.t. D0

D1
=
√

M0,1

M0,0
· M1,1

M1,0
as to satisfy Equation (1). This can be interpreted as

balancing the “significance” of type 0 (i.e. M0,0M0,1) with the “significance” of
type 1 (i.e. M1,0M1,1), setting the more significant type as the less probable (i.e.
if type 1 is more significant than type 0, than D1 < D0). We then pick ρ0, ρ1 that

satisfy
M1,1

M1,0
< ρ1

ρ0
<

M0,1

M0,0
and scale both by the sufficiently small multiplicative

factor so we satisfy the other inequality in Equation (2). (In particular, setting
ρ1
ρ0

= D0

D1
is a feasible solution.) Here, ρ0 and ρ1 are set such that the ratio ρ1

ρ0

balances the significance ratio w.r.t type 1 accusation (i.e. ρ1
ρ0
>

M1,1

M0,0
) and the

ratio ρ0
ρ1

balances the significance ratio w.r.t to type 0 accusation (i.e. ρ0ρ1 >
M0,0

M1,0
).

More concretely, for any matrix M =

(
1 c
c d

)
with parameters c, d satisfying

d < c2, we can set D0

D1
=
√
d and any sufficiently small ρ0, ρ1 satisfying ρ1

ρ0
∈ (dc , c)

and satisfy the requirements of Theorem 7.

Recall, in addition to the conditions specifically stated in Equation (2), we
also require that D2

0M0,0M1,0 = D2
1M0,1M1,1 in order for the two types of agent

B to play Randomized Response. In other words, the feasibility condition in
Equation (2) implies that B’s BNE strategy, denoted by p∗ = Pr[σ∗B(0) = 0]
and q∗ = Pr[σ∗B(1) = 1], is given by

(p∗, q∗) =
( D0D1M0,1M1,0 −D2

1M0,1M1,1

D0D1M0,1M1,0 −D0D1M0,0M1,1
,
D0D1M0,1M1,0 −D2

0M0,0M1,0

D0D1M0,1M1,0 −D0D1M0,0M1,1

)
The additional condition of D2

0M0,0M1,0 = D2
1M0,1M1,1 implies therefore that

p∗ = q∗. And so, in this case the B agent plays a Randomized Response strategy

that preserves ε-differential privacy for ε = ln( p∗

1−q∗ ) = ln
(
D1M0,1

D0M0,0

)
. Observe

that this value of ε is independent from the value of the coupon (i.e., from ρ0
and ρ1). This is due to the nature of BNE in which an agent plays her Nash-
strategy in order to make her opponent indifferent between various strategies
rather than maximizing her own utility. Therefore, the coordinates (p∗, q∗) are
such that they make agent A indifferent between several pure strategies. And
since the utility function of A is independent of ρ0, ρ1, we have that perturbing
the values of ρ0, ρ1 does not affect the coordinates (p∗, q∗). (Yet, perturbing the
values of ρ0, ρ1 does affect the various relations between the parameters of the
game, and so it may determine which of the 6 feasibility conditions does in fact
hold.)
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