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Abstract Much evidence has shown that prediction markets can effectively aggregate dis-
persed information about uncertain future events and produce remarkably accurate forecasts.
However, if the market prediction will be used for decision making, a strategic participant
with a vested interest in the decision outcome may manipulate the market prediction to influ-
ence the resulting decision. The presence of such incentives outside of the market would
seem to damage the market’s ability to aggregate information because of the potential dis-
trust among market participants. While this is true under some conditions, we show that, if
the existence of such incentives is certain and common knowledge, in many cases, there exist
separating equilibria where each participant changes the market probability to different val-
ues given different private signals and information is fully aggregated in the market. At each
separating equilibrium, the participant with outside incentives makes a costly move to gain
trust from other participants. While there also exist pooling equilibria where a participant
changes the market probability to the same value given different private signals and informa-
tion loss occurs, we give evidence suggesting that two separating equilibria are more natural
and desirable than many other equilibria of this game by considering domination-based
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belief refinement, social welfare, and the expected payoff of either participant in the game.
When the existence of outside incentives is uncertain, however, trust cannot be established
between players if the outside incentive is sufficiently large and we lose the separability at
equilibria.

Keywords Market manipulation · Equilibrium analysis · Prediction market ·
Information aggregation

1 Introduction

Prediction markets are powerful tools created to aggregate information from individuals about
uncertain events of interest. As a betting intermediary, a prediction market allows traders to
express their private information by wagering on event outcomes and rewards their contribu-
tions based on the realized outcome. The reward scheme in a prediction market is designed to
offer incentives for traders to reveal their private information. For instance, Hanson’s market
scoring rule (MSR) [18] incentivizes risk-neutral, myopic traders to truthfully reveal their
probabilistic estimates by ensuring that truthful betting maximizes their expected payoffs.
Substantial empirical work has shown that prediction markets produce remarkably accurate
forecasts [1,4,11,13,14,29].

In many real-world applications, the ultimate purpose to adopt prediction markets is to
inform decision making. If a forecast gives early warning signs for a suboptimal outcome,
companies may want to take actions to try to influence and improve the outcome. For exam-
ple, if the forecasted release date of a product is later than expected, the company may want
to assign more resources to the manufacturing of the product. If the box office revenue for a
movie is forecasted to be less than expected, the production company may decide to increase
its spending on advertising for the movie. In 2005 and 2006, GE Energy piloted what was
called Imagination Markets where employees traded securities on new technology ideas and
the ideas with the highest average security price during the last five days of the trading period
were awarded research funding [22]. Subsequently, the GE-wide Imagination Market was
launched in 2008. In these scenarios, little is understood of how the decision making process
affects the incentives for the participants of the prediction market. If a market participant
stands to benefit from a particular decision outcome, then he/she may have conflicting incen-
tives from inside and outside of the market. Moreover, when the potential outside incentive
is relatively more attractive than the payoff from inside the market, the participant may
have strong incentives to strategically manipulate the market probability and deceive other
participants.

We use flu prevention as a specific motivating example. Suppose that in anticipation of
the upcoming flu season, the US Centers for Disease Control and Prevention (CDC) would
like to purchase an appropriate number of flu vaccines and distribute them before the flu
season strikes. To accomplish this, the CDC could run a prediction market to generate a
forecast of the flu activity level for the upcoming flu season, and decide on the number of
flu vaccines to purchase and distribute based on the market forecast. In this case, suppliers
of flu vaccines, such as pharmaceutical companies, may have conflicting incentives inside
and outside of the market. A pharmaceutical company can maximize its payoff within the
market by truthfully reporting its information in the market or increase its profit from selling
flu vaccines by driving up the final market probability. This outside incentive may cause the
pharmaceutical company to manipulate the market probability in order to mislead the CDC
about the expected flu activity level.
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When participants have outside incentives to manipulate the market probability, it is ques-
tionable whether information can be fully aggregated in the prediction market, leading to an
accurate forecast. In this paper, we investigate information aggregation in prediction markets
when such outside incentives exist. We characterize multiple perfect Bayesian equilibrium
(PBE) of our game and try to identify a desirable equilibrium among them. In particular,
many of these equilibria are separating PBE, where the participant with the outside incen-
tive makes a costly move in order to credibly reveal her private information and informa-
tion is fully aggregated at the end of the market. Our results are summarized in the next
section.

1.1 Our results

We study a Bayesian model of a logarithmic market scoring rule (LMSR) [18] prediction
market with two participants. Following a predefined sequence, each participant makes a
single trade. The first participant has an outside incentive, which is certain and common
knowledge. Specifically, the first participant receives an additional payoff from outside of
the market, which is a result of a decision made based on the final market probability before
the outcome of the event is realized. Due to the presence of this outside incentive, the first
participant may want to mislead the other participant in order to maximize her total payoff
from inside and outside of the market. Surprisingly, we show that there may exist a separating
PBE, where every participant changes the market probability to different values when they
receive different private information. In general, a separating equilibrium is desirable because
all the private information gets incorporated into the final market probability. For our model,
the existence of a separating PBE requires that the prior distribution and the outside incentive
satisfy a particular condition and a separating PBE is achieved because the first participant
makes a costly move in order to gain trust of the other participant.

When a separating PBE exists, we characterize all pure strategy separating PBE of our
game. However, regardless of the existence of separating PBE, there also exist pooling PBE,
where the first participant changes the market probability to the same value after receiving
different private information. At a pooling PBE, information loss occurs because the first
participant is unable to convince the other participant of her intention to be honest, even if
she intends to be honest. We characterize a set of pooling equilibria of our game in which
the behavior of the first participant varies from revealing most of her private information to
revealing nothing.

Although it is difficult to conclude which PBE will be reached in practice, we show that,
under certain conditions, two separating PBE, denoted SE1 and SE2, are more desirable than
many other PBE. By applying domination-based belief refinement, we show that in every
separating PBE satisfying the refinement, the first participant’s strategy is identical to her
strategy in SE1. Under certain conditions, this belief refinement also excludes a subset of the
pooling PBE of our game. Moreover, we establish that any separating PBE maximizes the total
expected payoffs of the participants, if the outside incentive is an increasing convex function
of the final market probability. In addition, we analyze the PBE from the perspective of a
particular participant. The expected payoff of the first participant who has the outside incentive
is maximized in the separating PBE SE1, among all separating PBE of our game. Under
certain conditions, the first participant also gets a larger expected payoff in the separating
PBE SE1 compared to a set of pooling PBE of our game. For the second participant, his
expected payoff is maximized in the separating PBE SE2 among all separating PBE of our
game. Such evidence suggests that the separating PBE SE1 and SE2 are more desirable than
other equilibria of our game.
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Finally, we examine more general settings. Our results of the basic model are extended to
other MSRs. When the existence of the outside incentive is uncertain, we derive a negative
result that there does not exist a separating PBE where information is fully aggregated. When
a separating PBE exists for our game, we discuss a mapping from a subset of the separating
PBE of our game to the set of separating PBE of Spence’s job market signaling game [28].
This mapping provides nice intuitions for the existence of this subset of separating PBE.

1.2 Related work

In a prediction market, participants may have incentives from inside or outside of the market
to manipulate the market probability. Our work analyzes the strategic behavior of market
participants due to outside incentives. In the literature, the work by Dimitrov and Sami [12]
is the closest to our own. They study a model of two MSR prediction markets for correlated
events with two participants, Alice and Bob. Alice trades in the first market, and then trades in
the second market after Bob. When considering the first market, Alice has an outside incentive
because her trade in the first market can mislead Bob and she can obtain a higher profit in
the second market by correcting Bob’s mistake. In our model with only one market, the first
participant also has an outside incentive, but the incentive is a payoff that monotonically
increases with the final market probability. In addition, Dimitrov and Sami [12] focus on
deriving properties of the players’ equilibrium payoffs, whereas we explicitly characterize
equilibria of our game and analyze the players’ payoffs at these equilibria.

Even if there is no outside incentive, a participant in a prediction market may still have
incentive from within the market to behave strategically. For instance, if a participant has
multiple opportunities to trade in a MSR prediction market, he may choose to withhold infor-
mation in the earlier stages in order to make a larger profit later on, causing information loss
in the process. Chen et al. [5] and Gao et al. [16] show that the equilibria and information
revelation in such settings depend on the structure of the participants’ private information.
Iyer et al. [20] and Ostrovsky [24] focus on studying information aggregation at any PBE of a
prediction market instead of directly characterizing the equilibria. Ostrovsky [24] analyzes an
infinite-stage, finite-player market game with risk-neutral players. He characterized a condi-
tion under which the market price of a security converges in probability to its expected value
conditioned on all information at any PBE. Iyer et al. [20] extend the setting of Ostrovsky [24]
to risk-averse players and characterized the condition for full information aggregation in the
limit at any PBE. In this work, to isolate the effect of outside incentives, we focus on set-
tings where participants do not have incentives inside the market to manipulate the market
probability.

Some recent studies consider incentives for participants to misreport their probability
estimates in different models of information elicitation and decision making. Shi et al. [27]
consider a setting in which a principal elicits information about a future event while par-
ticipants can take hidden actions outside of the market to affect the event outcome. They
characterize all proper scoring rules that incentivize participants to honestly report their
probability estimates but do not incentivize them to take undesirable actions. Othman and
Sandholm [25] pair a scoring rule with a decision rule. In their model, a decision maker needs
to choose an action among a set of alternatives; he elicits from an expert the probability of
a future event conditioned on each action being taken; the decision maker then deterministi-
cally selects an action based on the expert’s prediction. They find that for the max decision
rule that selects the action with the highest reported conditional probability for the event,
no scoring rule strictly incentivizes the expert to honestly report his conditional probabili-
ties. Chen et. al. [7] and Chen and Kash [8] extend the model of Othman and Sandholm to
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settings of stochastic decision rules with a single expert and decision markets with multiple
experts respectively and characterized all scoring rules that incentivize honest reporting of
conditional probabilities. The above three studies [7,8,25] assume that experts do not have
an inherent interest in the decision and they derive utility only from the scoring rule payment.
Boutilier [2] however considers the setting in which an expert has an inherent utility in the
decision and develop a set of compensation rules that when combined with the expert’s utility
induces proper scoring rules. Our work in this paper does not intend to design mechanisms
to achieve good incentive properties in the presence of outside incentives. Instead, we study
the impact of outside incentives on trader behavior and information aggregation in prediction
markets using standard mechanisms.

In this paper, we model a participant’s outside incentive as a function of the final market
price. This is to capture scenarios where the participant’s utility will be affected by some
external decision, which will be made based on the final market price but prior to the realiza-
tion of the event outcome. In some other scenarios, however, a participant may simply have
preferences over event outcomes, i.e. the participant’s utility is state-dependent. For example,
a pharmaceutical company may make more profit when the flu activity level is widespread
than when it is sporadic. In such scenarios, the participant with state-dependent utility, if risk
averse, may trade in the prediction market for risk hedging and potentially affect the infor-
mation aggregation in the market. We assume that all participants are risk neutral and hence
this paper does not capture the risk hedging setting. If the participant with state-dependent
utility is risk neutral, her payoff inside the market is independent of her utility outside of the
market. The problem then reduces to market manipulation without outside incentives studied
by Chen et al. [5], Gao et al. [16], and Ostrovsky [24].

There are some experimental and empirical studies on price manipulation in prediction
markets due to incentives from outside of the market. The studies by Hansen et al. [17]
and by Rhode and Strumpf [26] analyze historical data of political election betting markets.
Both studies observe that these markets are vulnerable to price manipulations because media
coverage of the market prices may influence the population’s voting behavior. For instance,
Hansen et al. describe an email communication in which a party encouraged its members to
acquire contracts for the party in order to influence the voters’ behaviors in the 1999 Berlin
state elections, and it had temporary effects on the contract price. Manipulations in these
studies were attempts not to derive more profit within the market but instead to influence the
election outcome. These studies inspire us to theoretically study price manipulation due to
outside incentives.

In a similar spirit, Hanson et al. [19] conducted a laboratory experiment to simulate an
asset market in which some participants have an incentive to manipulate the prices. In their
experiment, subjects receive different private information about the common value of an
asset and they trade in a double auction mechanism. In their Manipulation treatment, half
of the subjects receive an additional payoff based on the median transaction prices, so they
(i.e. manipulators) have an incentive to raise the prices regardless of their private informa-
tion. Hanson et al. observed that, although the manipulators attempted to raise the prices,
they did not affect the information aggregation process and the price accuracy because the
non-manipulators accepted trades at lower prices to counteract these manipulation attempts.
This experiment closely resembles our setting because the incentive to manipulate is a pay-
off as a function of the market prices. However, there are two important differences. First,
the additional payoff depends on the transaction prices throughout the entire trading period
whereas in our setting the additional payoff depends only on the final market price. Second,
in Hanson’s experiment, although the existence of manipulators is common knowledge, the
identities of these manipulators are not known. In our model, we assume that the manipu-
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lators’ identities are common knowledge. These differences may account for the different
results in the two settings where manipulations did not have significant effect in Hanson’s
experiment whereas in our model there exist pooling equilibria where manipulations can
cause information loss. In particular, the separating equilibria in our setting may not be
achievable in Hanson’s experiment because the anonymous manipulators cannot establish
credibility with the other participants.

There are also experiments studying the effects of price manipulations on the information
aggregation process in prediction markets without specifying the reasons for such manipula-
tions. Camerer [3] tried to manipulate the price in a racetrack parimutuel betting market by
placing large bets. These attempts were unsuccessful and he conjectured the reason to be that
not all participants tried to make inferences from these bets. In their laboratory experiment,
Jian and Sami [21] set up several MSR prediction markets where participants may have
complementary or substitute information and the trading sequence may or may not be struc-
tured. They found that previous theoretical predictions of strategic behavior by Chen et al.[5]
are confirmed when the trading sequence is structured. Both studies suggest that whether
manipulation can have a significant impact on price accuracy depends critically on the extent
to which the participants know about other participants and reason about other participants’
actions. In our setting, we assume that all information is common knowledge except each
participant’s private information, so manipulation can have a significant impact on price
accuracy because participants can make a great amount of inference about each other and
about the market price.

When separating PBE of our game exist, our game has a surprising connection to Spence’s
job market signaling game [28]. In the signaling game, there are two types of workers applying
for jobs. They have different productivity levels that are not observable and they can choose to
acquire education, the level of which is observable. Spence shows that, there exist separating
PBE where the high productivity workers can use costly education as a signal to the employers
in order to distinguish themselves from the low productivity workers. In our setting, we
derive a similar result that at a separating PBE, one type of the first participant takes a loss
by misreporting her information as a signal to the second participant in order to distinguish
herself from her other type. We discuss this connection in detail in Sect. 6.

2 Model

2.1 Market setup

Consider a binary random variable X . We run a prediction market to predict its realization
x ∈ {0, 1}. Our market uses a market scoring rule (MSR) [18], which is a sequential shared
version of a proper scoring rule, denoted m(x, p).

A scoring rule m(x, p) for a binary random variable is a mapping m : {0, 1} × [0, 1] →
(−∞,∞), where x is the realization of X and p is the reported probability of x = 1. The
scoring rule is strictly proper if and only if the expected score of a risk-neutral participant
with a particular belief q for the probability of x = 1 is uniquely maximized by reporting
the probabilistic forecast p = q .

An MSR market with a scoring rule s starts with an initial market probability f0 for x = 1
and sequentially interacts with each participant to collect his probability assessment. When a
participant changes the market probability for x = 1 from p to p′, he is paid the scoring rule
difference, m(x, p′)−m(x, p), depending on the value of x . Given any strictly proper scoring
rule, the corresponding MSR also incentivizes risk-neutral, myopic participants to truthfully
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reveal their probability assessments as they can not influence the market probabilities before
their reports. We call a trader myopic if he is not forward looking and trades in each round
as if it is his only chance to participate in the market.

Even though we describe MSR as a mechanism for updating probabilities, it is known
that under mild conditions, MSR can be equivalently implemented as an automated market
maker mechanism where participants trade shares of contracts with the market maker and, as
a result, change market prices of the contracts [18,9]. For each outcome, there is a contract
that pays off $1 per share if the outcome materializes. The prices of all contracts represent
a probability distribution over the outcome space. Hence, under mild conditions, trading
contracts to change market prices is equivalent to changing market probabilities. We adopt
the probability updating model of MSR in this paper to ease our analysis.

Our basic model considers the logarithmic market scoring rule (LMSR) which is derived
from the logarithmic proper scoring rule

m(x, p) =
{

b log(p), if x = 1
b log(1 − p), if x = 0

(1)

where b is a positive parameter and p is a reported probability for x = 1. LMSR market
maker subsidizes the market as it can incur a loss of b log 2 if the traders predict the realized
outcome with certainty. The parameter b scales the traders’ payoffs and the market maker’s
subsidy but does not affect the incentives within the market. Without loss of generality, we
assume b = 1 for the rest of the paper. In Sect. 5, we extend our results for LMSR to other
MSRs.

Alice and Bob are two rational, risk-neutral participants in the market. They receive private
signals described by the random variables SA and SB with realizations sA, sB ∈ {H, T }.1 Let
π denote a joint prior probability distribution over X , SA and SB . We assume π is common
knowledge and omit it in our notation for brevity.

We define fsA,∅ = P(x = 1|SA = sA) and f∅,sB = P(x = 1|SB = sB) to represent the
posterior probability for x = 1 given Alice’s and Bob’s private signal respectively. Similarly,
fsA,sB = P(x = 1|SA = sA, SB = sB) represents the posterior probability for x = 1
given both signals. We assume that Alice’s H signal indicates a strictly higher probability
for x = 1 than Alice’s T signal, for any realized signal sB for Bob, i.e. fH,sB > fT,sB for
any sB ∈ {H, T }. In addition, we assume that without knowing Bob’s signal, Alice’s signal
alone also predicts a strictly higher probability for x = 1 with the H signal than with the T
signal and Alice’s signal alone can not predict x with certainty, i.e. 0 < fT,∅ < fH,∅ < 1.

In the context of our flu prediction example, we can interpret the realization x = 1 as the
event that the flu is widespread and x = 0 as the event that it is not. Then the two private
signals can be any information acquired by the participants about the flu activity, such as the
person’s own health condition.

In our basic model, the game has two stages. Alice and Bob receive their private signals
at the beginning of the game. Then, Alice changes the market probability from f0 to some
value rA in stage 1 and Bob, observing Alice’s report rA in stage 1, changes the market
probability from rA to rB in stage 2. The market closes after Bob’s report. The sequence of
play is common knowledge.

1 Our results can be easily extended to a more general setting in which Bob’s private signal has a finite number
n of realizations where n > 2. However, it is non-trivial to extend our results to the setting in which Alice’s
private signal has any finite number n of possible realizations. The reason is that our analysis relies on finding
an interval for each of Alice’s signals, where the interval represents the range of reports that do not lead to a
guaranteed loss for Alice when she receives this signal, and ranking all upper or lower endpoints of all such
intervals. The number of possible rankings is exponential in n, making the analysis challenging.
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Both Alice and Bob can profit from trading in the LMSR market. Moreover, Alice has
an outside payoff Q(rB), which is a real-valued, non-decreasing function of the final market
probability rB . In the flu prediction example, this outside payoff may correspond to the
pharmaceutical company’s profit from selling flu vaccines. The outside payoff function Q(·)
is common knowledge.

Even though our described setting is simple, with two participants, two realized signals for
each participant, and two stages, our results of this basic model are applicable to more general
settings. For instance, Bob can represent a group of participants who only participate after
Alice and do not have the outside payoff. Also, our results remain the same if another group
of participants come before Alice in the market as long as these participants do not have the
outside payoff and they only participate in the market before Alice’s stage of participation.
We examine more general settings in Sect. 5.

2.2 Solution concept

Our solution concept is the perfect Bayesian equilibrium (PBE) [15], which is a subgame-
perfect refinement of Bayesian Nash equilibrium. Informally, a strategy-belief pair is a PBE if
the players’ strategies are optimal given their beliefs at any time in the game and the players’
beliefs can be derived from other players’ strategies using Bayes’ rule whenever possible.

In our game, Alice’s strategy is a specification of her report rA in stage 1, given all
realizations of her signal SA. We denote her strategy as a mapping σ : {H, T } → �([0, 1]),
where �(S) denotes the space of distributions over a set S. When a strategy maps to a report
with probability 1 for both signals, the strategy is a pure strategy; otherwise, it is a mixed
strategy. We use σsA (rA) to denote the probability for Alice to report rA after receiving the sA

signal. We further assume that the support of Alice’s strategy is finite.2 If Alice does not have
an outside payoff, her optimal equilibrium strategy facing the MSR would be to report fsA,∅
with probability 1 after receiving the sA signal, since she only participates once. However,
Alice has the outside payoff in our model. So she may find reporting other values more
profitable if by doing so she can affect the final market probability in a favorable direction.

In stage 2 of our game, Bob moves the market probability from rA to rB . We denote Bob’s
belief as a mapping μ : {H, T } × [0, 1] → �({H, T }), and we use μsB ,rA (sA) to denote the
probability that Bob assigns to Alice having received the sA signal given that she reported
rA and Bob’s signal is sB . Since Bob participates last and faces a strictly proper scoring rule
in our game, his strategy at any equilibrium is uniquely determined by Alice’s report rA, his
realized signal sB and his belief μ; he will report rB = μsB ,rA (H) fH,sB + μsB ,rA (T ) fT,sB .

Thus, to describe a PBE of our game, it suffices to specify Alice’s strategy and Bob’s belief
because Alice is the first participant in the market and Bob has a dominant strategy which
is uniquely determined by his belief. To show that Alice’s strategy and Bob’s belief form a
PBE of our game, we only need to show that Alice’s strategy is optimal given Bob’s belief
and Bob’s belief can be derived from Alice’s strategy using Bayes’ rule whenever possible.

In our PBE analysis, we use the notions of separating and pooling PBE, similar to the
solution concepts used by Spence [28]. These PBE notions mainly concern Alice’s equilib-
rium strategy because Bob’s optimal PBE strategy is always a pure strategy. In general, a
PBE is separating if for any two types of each player, the intersection of the supports of the
strategies of these two types is an empty set. For our game, Alice has two possible types,
determined by her realized signal. A separating PBE of our game is characterized by the fact

2 This assumption is often used to avoid the technical difficulties that PBE has for games with a continuum
of strategies. See the work by Cho and Kreps [10] for an example.
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that the supports of Alice’s strategies for the two signals, σ(H) and σ(T ), do not intersect
with each other. At a separating PBE, information is fully aggregated since Bob can accu-
rately infer Alice’s signal from her report and always make the optimal report. In contrast, a
PBE is pooling if there exist at least two types of a particular player such that, the intersection
of the supports of the strategies of these two types is not empty. At a pooling PBE of our
game, the supports of Alice’s strategies σ(H) and σ(T ) have a nonempty intersection and
Bob may not be able to infer Alice’s signal from her report.

For our analysis on separating PBE, we focus on characterizing pure strategy separating
PBE. These pure strategy equilibria have succinct representations, and they provide clear
insights into the participants’ strategic behavior in our game.

3 Known outside incentive

In our basic model, it is certain and common knowledge that Alice has the outside payoff. Due
to the presence of the outside payoff, Alice may want to mislead Bob by pretending to have the
signal H when she actually has the unfavorable signal T , in order to drive up the final market
probability and gain a higher outside payoff. Bob recognizes this incentive, and in equilibrium
should discount Alice’s report accordingly. Therefore, we naturally expect information loss in
equilibrium due to Alice’s manipulation. However, from another perspective, Alice’s welfare
is also hurt by her manipulation since she incurs a loss in her outside payoff when having the
favorable signal H due to Bob’s discounting. In an equilibrium of the market, Alice balances
these two conflicting forces.

In the following analysis, we characterize (pure strategy) separating and pooling PBE of
our basic model. We emphasize on separating PBE because they achieve full information
aggregation at the end of the market. By analyzing Alice’s strategy space, we derive a succinct
condition that is necessary and sufficient for a separating PBE to exist for our game. If this
condition is satisfied, at any separating PBE of our game, Alice makes a costly statement, in
the form of a loss in her MSR payoff, in order to convince Bob that she is committed to fully
revealing her private signal, despite the incentive to manipulate. If the condition is violated,
there does not exist any separating PBE and information loss is inevitable.

3.1 Truthful versus separating PBE

The ideal outcome of this game is a truthful PBE where each trader changes the market
probability to the posterior probability given all available information. A truthful PBE is
desirable because information is immediately revealed and fully aggregated. However, we
focus on separating PBE. The class of separating PBE corresponds exactly to the set of PBE
achieving full information aggregation, and the truthful PBE is a special case in this class.
Even when a truthful PBE does not exist, some separating PBE may still exist. We describe
an example of the nonexistence of truthful PBE below.

At a truthful PBE, Alice’s strategy is

σH ( fH,∅) = 1, σT ( fT,∅) = 1, (2)

whereas at a (pure strategy) separating PBE, Alice’s strategy can be of the form

σH (X) = 1, σT (Y ) = 1. (3)

for any X, Y ∈ [0, 1] and X �= Y .
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In our market model, Alice maximizes her expected market scoring rule payoff in the first
stage by reporting fsA,∅ after receiving the sA signal. If she reports rA instead, then she incurs
a loss in her expected payoff. We use L( fsA,∅, rA) to denote Alice’s expected loss in MSR
payoff by reporting rA rather than fsA,∅ after receiving the sA signal as follows:

L( fsA,∅, rA) = fsA,∅ log
fsA ,∅
rA

+ (1 − fsA,∅) log
1− fsA ,∅

1−rA
, (4)

which is the Kullback–Leibler divergence DK L (fsA ||r) where fsA = ( fsA,∅, 1 − fsA,∅) and
r = (rA, 1−rA). The following proposition describes some useful properties of L( fsA,∅, rA)

that will be used in our analysis in later sections.

Proposition 1 For any fsA,∅ ∈ (0, 1), L( fsA,∅, rA) is a strictly increasing function of rA

and has range [0,+∞) in the region rA ∈ [ fsA,∅, 1); it is a strictly decreasing function of
rA and has range [0,+∞) in the region rA ∈ (0, fsA,∅]. For any rA ∈ (0, 1), L( fsA,∅, rA) is
a strictly decreasing function of fsA,∅ for fsA,∅ ∈ [0, rA] and a strictly increasing function
of fsA,∅ for fsA,∅ ∈ [rA, 1].

The proposition can be easily proven by analyzing the first-order derivatives of
L( fsA,∅, rA). For completeness, we include the proof in Appendix 1. Lemma 1 below gives a
sufficient condition on the prior distribution and outside payoff function for the nonexistence
of the truthful PBE.

Lemma 1 For any prior distribution π and outside payoff function Q(·), if inequality (5) is
satisfied, Alice’s truthful strategy given by (2) is not part of any PBE of this game.

L( fT,∅, fH,∅) < ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ] (5)

Proof We prove by contradiction. Suppose that inequality (5) is satisfied and there exists a
PBE of our game in which Alice uses her truthful strategy. At this PBE, Bob’s belief on the
equilibrium path must be derived from Alice’s strategy using Bayes’ rule, that is,

μsB , fH,∅(H) = 1, μsB , fT,∅(T ) = 1. (6)

Given Bob’s belief, Alice can compare her expected payoff of reporting fH,∅ with her
expected payoff of reporting fT,∅ after receiving the T signal. If Alice chooses to report fH,∅
with probability 1 after receiving the T signal, then her expected gain in outside payoff is
ESB [Q( fH,SB )− Q( fT,SB ) | SA = T ] (RHS of inequality (5)) and her expected loss in MSR
payoff is L( fT,∅, fH,∅) (LHS of inequality (5)). Because of (5), Alice has a positive net gain
in her total expected payoff if she reports fH,∅ instead of fT,∅ after receiving the T signal.
This contradicts the assumption that the truthful strategy is an equilibrium strategy. �	

Intuitively, the RHS of inequality (5) computes Alice’s maximum possible gain in outside
payoff when she has the T signal assuming Bob (incorrectly) believes that Alice received
the H signal. Thus, if the outside payoff increases rapidly with the final market probability,
Alice’s maximum potential gain in outside payoff can outweigh her loss inside the market
due to misreporting, which is given by the LHS of inequality (5).

In Appendix 2, we present and discuss Example 1, which shows a prior distribution and
an outside payoff function for which inequality (5) is satisfied and thus the truthful PBE does
not exist. This is one of many examples where the truthful PBE does not exist. When we
discuss the nonexistence of any separating PBE in Sect. 3.3, we will present another pair of
prior distribution and outside payoff function in Example 2 where a truthful PBE also fails
to exist.
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3.2 A deeper look into Alice’s strategy space

Alice’s strategy space is the interval [0, 1] as she is asked to report a probability for x = 1.
Her equilibrium strategy depends on the relative attractiveness of the MSR payoff and outside
payoff, which depend on the prior distribution and the outside payoff function. In this section,
for a given pair of prior distribution and outside payoff function, we define some key values
that are used to partition Alice’s strategy space to facilitate our equilibrium analysis.

Given a prior distribution π and an outside payoff function Q, for sA ∈ {H, T }, we define
YsA to be the unique value in [ fsA,∅, 1] satisfying Eq. (7) and Y−sA to be the unique value in
[0, fsA,∅] satisfying Eq. (8):

L( fsA,∅, YsA ) = ESB [Q( fH,SB ) − Q( fT,SB ) | sA], (7)

L( fsA,∅, Y−sA ) = ESB [Q( fH,SB ) − Q( fT,SB ) | sA]. (8)

The RHS of the above two equations take expectations over all possible realizations of
Bob’s signal given Alice’s realized signal sA. Thus, the values of YsA and Y−sA depend only
on Alice’s realized signal sA and are independent of Bob’s realized signal.

Note that the RHS of Eqs. (7) and (8) are nonnegative because fH,sB > fT,sB for all sB

and Q(·) is a non-decreasing function. By the properties of the loss function L( fsA,∅, rA)

described in Proposition 1, YsA and Y−sA are well defined—given any pair of prior distribution
and outside payoff function, there exists YsA ∈ [ fsA,∅, 1) and Y−sA ∈ (0, fsA,∅] such that
Eqs. (7) and (8) are satisfied. We note that YsA < 1 and Y−sA > 0 because L( fsA,∅, r) → ∞
as r → 0 or r → 1.

Intuitively, YsA and Y−sA are the maximum and minimum values that Alice might be
willing to report after receiving the sA signal respectively. The RHS of Eqs. (7) and (8) are
Alice’s maximum possible expected gain in outside payoff by reporting some value rA when
she has the sA signal. This maximum expected gain would be achieved if Bob had the belief
that Alice has the H signal when she reports rA and the T signal otherwise. Thus, for any
realized signal sA, Alice would not report any value outside of the range [Y−sA , YsA ] because
doing so is strictly dominated by reporting fsA,∅, regardless of Bob’s belief.

For each realized signal sA, Alice’s strategy space is partitioned into three distinct ranges,
[0, Y−sA ], (Y−sA , YsA ), and [YsA , 1]. However, the partition of Alice’s entire strategy space
depends on the relative positions of YH , Y−H , YT , and Y−T , which in turn depend on the
prior distribution and the outside payoff function. In the proposition below, we state several
relationships of YH , Y−H , YT , Y−T , fH,∅, and fT,∅ that hold for all prior distributions and
outside payoff functions.

Proposition 2 For all prior distributions and outside payoff functions, the following inequal-
ities are satisfied:

YH ≥ fH,∅ ≥ Y−H , (9)

YT ≥ fT,∅ ≥ Y−T , (10)

YH ≥ Y−T . (11)

Proof (9) and (10) hold by definition of YsA and Y−sA . Because we assume fH,∅ > fT,∅, we
have YH ≥ fH,∅ > fT,∅ ≥ Y−T . Thus, YH ≥ Y−T . �	

The relationships between YH and YT , YT and Y−H , and Y−H and Y−T depend on the
prior distribution and the outside payoff function. Next, we prove Proposition 3 below, which
is useful for later analyses.
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Proposition 3 L( fH,∅, YT ) ≤ L( fH,∅, Y−T ) and the equality holds only when YT = Y−T .

This proposition is a direct consequence of Proposition 1. We include the proof in Appen-
dix 3.

3.3 A necessary and sufficient condition for pure strategy separating PBE

If a separating PBE exists for our game, it must be the case that when Alice receives the H
signal, she can choose to report a particular value which convinces Bob that she is revealing
her H signal truthfully. We show that this is possible if and only if the condition YH ≥ YT

is satisfied. When YH ≥ YT , if Alice receives the T signal, reporting rA ∈ [YT , YH ] is
dominated by reporting fT,∅. (Alice may be indifferent between reporting YT and fT,∅.
Otherwise, the domination is strict.) So by reporting a high enough value rA ∈ [YT , YH ]
after receiving the H signal, Alice can credibly reveal to Bob that she has the H signal.
However, when YH < YT , this is not possible. We show below that YH ≥ YT is necessary
and sufficient for a separating PBE to exist for this game.

3.3.1 Sufficient condition

To show that YH ≥ YT is a sufficient condition for a separating PBE to exist, we characterize
a particular separating PBE, denoted SE1 when YH ≥ YT . At this separating PBE, Alice’s
strategy σ and Bob’s belief μ are given below:

SE1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σH (max (YT , fH,∅)) = 1, σT ( fT,∅) = 1

When Y−T < YT , μsB ,rA (H) =
⎧⎨
⎩

1, if rA ∈ [YT , 1]
0, if rA ∈ (Y−T , YT )

1, if rA ∈ [0, Y−T ]
.

When Y−T = YT , μsB ,rA (H) =
⎧⎨
⎩

1, if rA ∈ (YT , 1]
0, if rA = YT = Y−T

1, if rA ∈ [0, Y−T )

.

(12)

The special case Y−T = YT only happens when Y−T = fT,∅ = YT , where SE1 is a
truthful betting PBE. Intuitively, when fH,∅ < YT , Alice is willing to incur a high enough
cost by reporting YT after receiving the H signal, to convince Bob that she has the H signal.
Since Bob can perfectly infer Alice’s signal by observing her report, he would report fsA,sB

in stage 2 and information is fully aggregated. Alice lets Bob take a larger portion of the
MSR payoff in exchange for a larger outside payoff.

In SE1, Bob’s belief says that if Alice makes a report that is too high to be consistent with
the T signal (rA > YT ), Bob believes that she received the H signal. This is reasonable since
Alice has no incentive to report a value that is greater than YT when she receives the T signal
by the definition of YT . Similarly, if Alice makes a report that is too low to be consistent with
the T signal (rA < Y−T ), Bob also believes that she received the H signal. If Alice reports a
value such that reporting this value after receiving the T signal is not dominated by reporting
fT,∅ (rA ∈ (Y−T , YT )), then Bob believes that she received the T signal.

Theorem 1 If YH ≥ YT , SE1 described in (12) is a separating PBE of our game.

Proof First, we show that if YH ≥ YT , then Alice’s strategy is optimal given Bob’s belief.
When Alice receives the T signal, by definition of YT , Alice would not report any rA > YT ,

and furthermore she is indifferent between reporting YT and fT,∅. By definition of Y−T , Alice
would not report any rA < Y−T , and she is indifferent between reporting Y−T and fT,∅. Any
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other report that is less than YT and greater than Y−T is dominated by a report of fT,∅ given
Bob’s belief. Therefore, it is optimal for Alice to report fT,∅ after receiving the T signal.

When Alice receives the H signal and Y−T < YT , given Bob’s belief, she maximizes her
expected outside payoff by reporting any rA ∈ [0, Y−T ] ∪ [YT , 1]. Now we consider Alice’s
expected MSR payoff. By Proposition 3, if fH,∅ < YT , reporting any rA ≤ Y−T is strictly
dominated by reporting YT and Alice maximizes her expected MSR payoff by reporting YT .
Otherwise, if fH,∅ ≥ YT , then Alice maximizes her expected MSR payoff by reporting fH,∅.
When Alice receives the H signal and Y−T = YT , it must be that fH,∅ > YT . Given Bob’s
belief in this case, Alice maximizes her expected MSR payoff by reporting fH,∅. Therefore,
when Alice receives the H signal, it is optimal for her to report max(YT , fH,∅).

Moreover, we can show that Bob’s belief is consistent with Alice’s strategy by mechani-
cally applying Bayes’ rule (argument omitted). Thus, SE1 is a PBE of this game. �	

3.3.2 Necessary condition

In Theorem 1, we characterized a separating PBE when YH ≥ YT . In this part, we show that
if YH < YT , there no longer exists a separating PBE. Intuitively, when YH < YT , even if
Alice is willing to make a costly report of YH —which is the maximum value she would be
willing to report after receiving the H signal—she still cannot convince Bob that she will
report her T signal truthfully since her costly report is not sufficient to offset her incentive
to misreport when having the T signal.

We first prove two useful lemmas. Lemma 2 states that, at any separating PBE, after
receiving the T signal, Alice must report fT,∅ with probability 1. Lemma 3 says that at any
separating PBE, after receiving the H signal, Alice does not report any rA ∈ (Y−T , YT ).
Then we show in Theorem 2 that YH ≥ YT is a necessary condition for a separating PBE to
exist.

Lemma 2 In any separating PBE of our game, Alice must report fT,∅ with probability 1
after receiving the T signal.

Proof Suppose that Alice reports rA �= fT,∅ after receiving the T signal. At any separating
PBE, Bob’s belief must be μsB ,rA (H) = 0, and μsB , fT,∅(H) ≥ 0 in order to be consistent
with Alice’s strategy. However, if Alice reports fT,∅ instead, she can strictly improve her
MSR payoff and weakly improves her outside payoff, which is a contradiction. �	

Note that Lemma 2 does not depend on the specific scoring rule that the market uses. It
holds for any MSR market using a strictly proper scoring rule. In fact, we will use this lemma
in Sect. 5 when extending our results to other MSR markets.

Lemma 3 In any separating PBE of our game, Alice does not report any rA ∈ (Y−T , YT )

with positive probability after receiving the H signal.

Proof We show this by contradiction. Suppose that at a separating PBE, Alice reports rA ∈
(Y−T , YT ) with positive probability after receiving the H signal. Since this PBE is separating,
Bob’s belief must be that μsB ,rA (H) = 1 to be consistent with Alice’s strategy. By Lemma 2,
in any separating PBE, Alice must report fT,∅ after receiving the T signal and Bob’s belief
must be μsB , fT,∅(H) = 0. Thus, for rA ∈ (Y−T , YT ), by definitions of YT and Y−T , Alice
would strictly prefer to report rA rather than fT,∅ after receiving the T signal, which is a
contradiction. �	
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Theorem 2 If YH < YT , there does not exist a separating PBE of our game.

Proof We prove this by contradiction. Suppose that YH < YT and there exists a separating
PBE of our game. At this separating PBE, suppose that Alice reports some rA ∈ [0, 1] with
positive probability after receiving the H signal.

By definitions of YH and Y−H , we must have rA ∈ [Y−H , YH ]. By Lemma 3, we know
that rA /∈ (Y−T , YT ). Next, we show that YH < YT implies Y−H > Y−T .

By definitions of YH and Y−H , we have L( fH,∅, Y−H ) = L( fH,∅, YH ). By Proposi-
tion 1 and YH < YT , we have L( fH,∅, YH ) < L( fH,∅, YT ). By Proposition 3, we have
L( fH,∅, YT ) ≤ L( fH,∅, Y−T ). To summarize, we have the following:

L( fH,∅, Y−H ) = L( fH,∅, YH ) < L( fH,∅, YT ) ≤ L( fH,∅, Y−T ) ⇒ Y−H > Y−T (13)

Thus, rA ∈ [Y−H , YH ] and rA /∈ (Y−T , YT ) can not hold simultaneously. We have a contra-
diction. �	

3.3.3 When is YH ≥ YT satisfied?

Since YH ≥ YT is a necessary and sufficient condition for a separating PBE to exist, it
is natural to ask when this condition is satisfied. The values of YH and YT , and whether
YH ≥ YT is satisfied depend on the prior probability distribution π and the outside payoff
function Q(·). When Alice’s realized signal is sA ∈ {H, T }, YsA is the highest value that she
is willing to report if by doing so she can convince Bob that she has the H signal. The higher
the expected gain in outside payoff for Alice to convince Bob that she has the H signal rather
than the T signal, the higher the value of YsA . Below we first show that YH > YT is satisfied
when the signals of Alice and Bob are independent. In Appendix 4, we describe Example 2
illustrating a scenario where YH < YT is satisfied.

Proposition 4 If the signals of Alice and Bob, SA and SB, are independent, i.e. P(sB |sA) =
P(sB),∀sB , sA, then YH > YT is satisfied.

Proof When the signals of Alice and Bob are independent, Alice’s expected maximum gain
in outside payoff is the same, regardless of her realized signal. If we use the loss function as
an intuitive distance measure from fsA,∅ (the honest report) to YsA (the maximum value that
Alice is willing to report), then the amount of deviation from fsA,∅ to YsA is the same for the
two realized signals. The monotonicity properties of the loss function and fH,∅ > fT,∅ then
imply YH > YT . We formalize this argument below.

By definitions of YH and YT and the independence of SA and SB , we have

L( fH,∅, YH ) = ESB [Q( fH,SB ) − Q( fT,SB )] = L( fT,∅, YT ). (14)

By Proposition 1 and fT,∅ < fH,∅ ≤ YH , we know

L( fT,∅, YH ) > L( fH,∅, YH ). (15)

Using (14) and (15), we can derive that

L( fT,∅, YH ) > L( fH,∅, YH ) = L( fT,∅, YT ). (16)

Because YT ≥ fT,∅ and YH > fT,∅, applying Proposition 1 again, we get YH > YT . �	
The information structure with independent signals has been studied by Chen et al. [5]

and Gao et al. [16] in analyzing players’ equilibrium behavior in LMSR without outside
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incentives. It is used to model scenarios where players obtain independent information but the
outcome of the predicted event is stochastically determined by their aggregated information.
Examples include the prediction of whether a candidate will receive majority vote and win an
election, in which case players’ votes can be viewed as independent signals and the outcome
is determined by all votes.

3.4 Pure strategy separating PBE

In Sect. 3.3, we described SE1, a particular pure strategy separating PBE of our game. There
are in fact multiple pure strategy separating PBE of our game when YH ≥ YT . In this section,
we characterize all of them according to Alice’s equilibrium strategy.3

By Lemma 2, at any separating PBE, Alice’s strategy must be of the following form:

σ S
H (rA) = 1, σ S

T ( fT,∅) = 1. (17)

for some rA ∈ [0, 1]. In Lemma 4, we further narrow down the possible values of rA in
Alice’s strategy at any separating PBE.

Lemma 4 If YH ≥ YT , at any separating PBE, Alice does not report any rA ∈ [0, Y−H ) ∪
(Y−T , YT ) ∪ (YH , 1] with positive probability after receiving the H signal.

Proof By definitions of YH and Y−H , Alice does not report any rA < Y−H or rA > YH

after receiving the H signal. By Lemma 3, Alice does not report any rA ∈ (Y−T , YT ) after
receiving the H signal. �	

Lemma 4 indicates that, at any separating PBE, it is only possible for Alice to report
rA ∈ [max(Y−H , YT ), YH ] or, if Y−H ≤ Y−T , rA ∈ [Y−H , Y−T ] with positive probability
after receiving the H signal.

The next two theorems characterize all separating PBE of our game when YH ≥ YT is
satisfied. Theorems 3 shows that for every rA ∈ [max(Y−H , YT ), YH ] there is a separating
PBE where Alice reports rA after receiving the H signal. Given YH ≥ YT , we may have
either Y−H > Y−T or Y−H ≤ Y−T . If Y−H ≤ Y−T , we show in Theorem 4 that for every
rA ∈ [Y−H , Y−T ], there exists a separating PBE at which Alice reports rA after receiving the
H signal. The proofs of these two theorems are provided in Appendices 5 and 6 respectively.

Theorem 3 If YH ≥ YT , for every rA ∈ [max(Y−H , YT ), YH ], there exists a pure strategy
separating PBE of our game in which Alice’s strategy is σ S

H (rA) = 1, σ S
T ( fT,∅) = 1.

Theorem 4 If YH ≥ YT and Y−H ≤ Y−T , for every rA ∈ [Y−H , Y−T ], there exists a pure
strategy separating PBE in which Alice’s strategy is σ S

H (rA) = 1, σ S
T ( fT,∅) = 1.

3.5 Pooling PBE

Regardless of the existence of separating PBE, there may exist pooling PBE for our game
in which information is not fully aggregated at the end of the market. If fH,∅ < YT , there
always exists a pooling PBE in which Alice reports fH,∅ with probability 1 after receiving the
H signal. In general, if the interval (max(Y−H , Y−T ), min(YH , YT )) is nonempty, for every
rA ∈ (max(Y−H , Y−T ), min(YH , YT ))\{ fT,∅}, if rA satisfies certain conditions, there exists
a pooling PBE of our game in which Alice reports rA with probability 1 after receiving the

3 There exist other separating PBE where Alice plays the same equilibrium strategies as in our characterization
but Bob has different beliefs off the equilibrium path.
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H signal. However, it is possible that no pooling PBE exists for a particular prior distribution
and outside payoff function. We characterize a sufficient condition for pooling PBE to exist
for our game in this section.

For any k ∈ (max(Y−H , Y−T ), min(YH , YT ))\{ fT,∅}, consider the following pair of
Alice’s strategy and Bob’s belief:

P E1(k) :
⎧⎨
⎩

σ P
H (k) = 1, σ P

T (k) = γ (k), σ P
T ( fT,∅) = 1 − γ (k)

μP
sB ,rA

(H) =
{

g(γ (k), sB), if rA = k
0, if rA ∈ [0, k) ∪ (k, 1]

(18)

where

g(γ (k), sB) = P(SA = H |sB)

P(SA = H |sB) + P(SA = T |sB)γ (k)
, (19)

and γ (k) is defined to be the maximum value within [0, 1] such that the following inequality
is satisfied.

L( fT,∅, k)≤ ESB [Q(g(γ (k), SB) fH,SB +(1 − g(γ (k), SB)) fT,SB )−Q( fT,SB ) | SA = T ]
(20)

Intuitively, γ (k) represents the probability weight that Alice shifts from reporting fT,∅
to reporting k after receiving the T signal. The choice of γ (k) ensures that Alice’s expected
loss in her MSR payoff by misreporting is less than or equal to the expected potential gain
in her outside payoff. So if γ (k) satisfies Eq. (20), then γ (k) = 1. Otherwise, γ (k) is set to
a value such that the LHS and RHS of Eq. (20) are equal.

It is easy to see that γ (k) is well defined for every k ∈ (max(Y−H , Y−T ), min(YH , YT ))\
{ fT,∅}. The RHS of inequality (20) is strictly monotonically decreasing in γ (k). When γ (k) =
0, the RHS equals L( fT,∅, YT ) and L( fT,∅, Y−T ). Because Y−T < k < YT , we know that
γ (k) > 0.

By (18), Bob believes that Alice received the T signal if her report is not equal to k. If
Alice reports k and Bob receives sB signal, Bob believes that Alice received the H signal
with probability g(γ (k), sB).

In Theorem 5, we show that P E1(k) is a pooling PBE if the following inequality is
satisfied:

L( fH,∅, k) ≤ ESB [Q(g(γ (k), SB) fH,SB +(1−g(γ (k), SB)) fT,SB )− Q( fT,SB ) | SA = H ].
(21)

Inequality (21) ensures that when Alice receives the H signal, she is better off reporting k
rather than reporting fH,∅ given Bob’s belief in PE1(k). When k = fH,∅, inequality (21) is
automatically satisfied because the LHS of inequality (21) is 0 and the RHS of inequality (21)
is positive. However, for other values of k, whether inequality (21) is satisfied depends on
the prior distribution and the outside payoff function. This means that, if fH,∅ < YT , which
ensures the interval (max(Y−H , Y−T ), min(YH , YT )) is nonempty and contains fH,∅, then
there always exists a pooling PBE of our game where Alice reports fH,∅ with probability 1
after receiving the H signal.

Theorem 5 If (max(Y−H , Y−T ), min(YH , YT )) is nonempty, for any k ∈ (max(Y−H , Y−T ),
min(YH , YT ))\{ fT,∅}, PE1(k) is a pooling PBE of our game if inequality (21) is satisfied.

Proof We’ll first show that Alice’s strategy is optimal given Bob’s belief.
When Alice receives the H signal and k �= fH,∅, for rA ∈ [0, 1]\{k}, it is optimal for

Alice to report fH,∅ since her outside payoff is constant and her MSR payoff is maximized.
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By inequality (21), Alice weakly prefers reporting k than reporting fH,∅. Enforcing the
consistency with Bob’s belief, we know that Alice’s optimal strategy must be reporting k.
When Alice receives the H signal and k = fH,∅, it is also optimal for Alice to report k
because by doing so she maximizes both the expected MSR payoff and the outside payoff
given Bob’s belief.

When Alice receives the T signal, for rA ∈ [0, 1]\{k}, Alice maximizes her total payoff
by reporting fT,∅. So the support of Alice’s equilibrium strategy after receiving the T signal
includes at most fT,∅ and k. By the definition of γ (k), either Alice is indifferent between
reporting fT,∅ and k, or she may strictly prefer reporting k when γ (k) = 1. Enforcing the
consistency of Bob’s belief, we know that Alice’s optimal strategy must be reporting k with
probability γ (k) and reporting fT,∅ with probability 1 − γ (k).

Moreover, we can show that Bob’s belief is consistent with Alice’s strategy by mechani-
cally applying Bayes’ rule (argument omitted). Given the above arguments, Alice’s strategy
and Bob’s belief form a PBE of our game. �	
Babbling PBE

For Bob’s belief in P E1(k), it is possible that for some k, γ (k) = 1. In this case, Alice’s
strategy and Bob’s belief become the following:

B E1(k) :
⎧⎨
⎩

σ B
H (k) = 1, σ B

T (k) = 1

μB
sB ,rA

(H) =
{

P(sA = H |sB), if rA = k
0, if rA ∈ [0, k) ∪ (k, 1]

(22)

This special case of the pooling PBE is often alluded to as a babbling PBE. At this
babbling PBE, if Alice reports k, then Bob believes that she received the H signal with
the prior probability P(sA = H |sB). Otherwise, if Alice reports any other value, then Bob
believes that she received the T signal for sure. This belief forces Alice to make a completely
uninformative report by always reporting k no matter what her realized signal is. This PBE
is undesirable since Alice does not reveal her private information.

4 Identifying desirable PBE

The existence of multiple equilibria is a common problem to many dynamic games of incom-
plete information. This is undesirable because there is no clear way to identify a single equi-
librium that the players are likely to adopt and hence it is difficult to predict how the game
will be played in practice. In our setting, this problem arises because we have a great deal of
freedom in choosing beliefs off the equilibrium path. A common way to address this problem
is to use some criteria to identify one or more equilibria to be more desirable than others. An
equilibrium is more desirable than other equilibria if it satisfies reasonable belief refinements
or optimizes certain desirable objectives.

In this section, we give evidence suggesting that two separating PBE SE1 (defined in
Eq. (12)) and SE2 (defined in Eq. (28)) are more desirable than many other PBE of our
game, according to several different objectives. First, in every separating PBE that satisfies
the domination-based belief refinement, Alice plays the same strategy as her strategy in SE1.
This refinement also excludes a subset of pooling PBE of our game under certain conditions.
With the goal of maximizing social welfare, we show that any separating PBE maximizes the
social welfare of our game among all PBE if Alice’s outside payoff function Q(·) is convex.4

This shows that both SE1 and SE2 are more desirable than pooling equilibria. Finally,

4 Situations with a convex Q(·) function arise, for example, when manufactures have increasing returns to
scale, which might be the case in our flu prediction example.
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we compare the multiple separating equilibria from the perspective of a particular player. In
terms of maximizing Alice’s total expected payoff, the PBE SE1 is more desirable than all
other separating PBE and many pooling PBE of our game. From the perspective of Bob, the
PBE SE2 maximizes Bob’s total expected payoff among all separating PBE of our game.

4.1 Domination-based belief refinement

There has been a large literature in economics devoted to identifying focal equilibria through
refinements. One simple PBE refinement, as discussed by Mas-Colell et al. [23], arises from
the idea that reasonable beliefs should not assign positive probability to a player taking an
action that is strictly dominated for her. Formally, we define this refinement for our game as
follows:

Definition 1 [Domination-based belief refinement] If possible, at any PBE satisfying
domination-based belief refinement, Bob’s belief should satisfy μsB ,rA (θ) = 0 if report-
ing rA for Alice’s type θ is strictly dominated by reporting r ′

A ∈ [0, 1] where r ′
A �= rA for

any valid belief of Bob.

The qualification “if possible” covers the case that reporting rA for all of Alice’s types
is strictly dominated by reporting some other r ′

A for any valid belief for Bob. In this case,
if we apply the refinement to Bob’s belief, then Bob’s belief must set μsB ,rA (H) = 0 and
μsB ,rA (T ) = 0, which does not result in a valid belief for Bob. Therefore, in this case the
refinement would not apply and Bob’s belief is unrestricted when Alice reports such a rA.
Using Definition 1 we can put restrictions on Bob’s belief at any PBE.

Lemma 5 At any PBE satisfying the domination-based belief refinement, if YH ≥ YT , then
Bob’s belief should satisfy μsB ,rA (T ) = 0 for any rA ∈ (YT , YH ]∩[Y−H , YH ]. If Y−H ≤ Y−T ,
then Bob’s belief should satisfy μsB ,rA (T ) = 0 for any rA ∈ [Y−H , Y−T ).

Proof By definition of YT and Y−T , reporting any rA > YT or rA < Y−T after receiving
the T signal is strictly dominated by reporting fT,∅ for Alice. By definition of YH and Y−H ,
reporting any rA > YH or rA < Y−H after receiving the H signal is strictly dominated by
reporting fH,∅ for Alice.

For any rA ∈ [0, min{Y−H , Y−T }) ∪ (max(YT , YH ), 1], Bob’s belief is unrestricted
because the domination-based belief refinement does not apply. By Definition 1, it is
straightforward to verify that Bob’s belief should satisfy μsB ,rA (T ) = 0 for any rA ∈
(YT , YH ] ∩ [Y−H , YH ] when YH ≥ YT , and for any rA ∈ [Y−H , Y−T ) when Y−H ≤ Y−T .

�	
Given this refinement on Bob’s belief at the PBE, we show below that at every separating

PBE of our game, Alice’s strategy must be the same as that in the separating PBE SE1.5

Proposition 5 At every separating PBE satisfying the domination-based belief refinement,
Alice’s strategy must be σH (max( fH,∅, YT )) = 1, and σT ( fT,∅) = 1.

We provide the complete proof in Appendix 7.

Proof (Sketch) By Theorem 3, for every rA ∈ [max(Y−H , YT ), YH ], there exists a pure
strategy separating PBE in which Alice reports rA with probability 1 after receiving the H

5 Bob’s belief can be different from that in SE1.
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signal. We show that Alice would not report rA ∈ [max(Y−H , YT ), YH ]\ max( fH,∅, YT )

after receiving the H signal at any PBE satisfying the domination-based belief refinement.
By Theorem 4, if YH ≥ YT and Y−H ≤ Y−T , for every rA ∈ [Y−H , Y−T ], there exists a

pure strategy separating PBE in which Alice reports rA with probability 1 after receiving the
H signal. First, we show that Alice would not report rA ∈ [Y−H , Y−T ) at any PBE satisfying
the domination-based belief refinement. Then we show that Alice also would not report Y−T

at any such PBE.
Finally, we show that SE1 described in (12) satisfies the domination-based belief refine-

ment. �	
If fH,∅ > YT , the domination-based refinement can also exclude all pooling PBE and

the unique PBE satisfying the refinement is the truthful PBE. We show below that, when
fH,∅ > YT , at every PBE of our game, Alice’s strategy is σH ( fH,∅) = 1, σT ( fT,∅) = 1,
which is Alice’s strategy in the separating PBE SE1.

Proposition 6 At every PBE of our game satisfying the domination-based refinement, if
fH,∅ > YT , then Alice’s strategy must be σH ( fH,∅) = 1 and σT ( fT,∅) = 1.

Proof Since fH,∅ ∈ (YT , YH ], then by Lemma 5, Bob’s belief must set μsB , fH,∅(T ) = 0. If
Alice receives the H signal, then her MSR payoff is strictly maximized by reporting fH,∅
and her outside payoff is weakly maximized by reporting fH,∅. Therefore, it is optimal for
Alice to report fH,∅ after receiving the H signal.

If Alice receives the T signal, reporting fH,∅ is strictly dominated by reporting fT,∅ for
any valid belief for Bob because fH,∅ > YT . Therefore, Alice does not report fH,∅ after
receiving T signal, and any PBE of the game must be a separating PBE. By Proposition 5,
any separating PBE satisfying the refinement has Alice play the strategy σH ( fH,∅) = 1 and
σT ( fT,∅) = 1. �	

If fH,∅ ≤ YT , applying the domination-based refinement does not exclude all pooling
PBE of this game. In the proposition below, we show that the domination-based refinement
excludes a subset of pooling PBE in which Alice reports a low enough value after receiving
the H signal. The proof of the proposition is provided in Appendix 8.

Proposition 7 At every PBE of our game satisfying the domination-based refinement, if
fH,∅ ≤ YT , then Alice does not report any rA ≤ r after receiving the H signal where r is
the unique value in [0, fH,∅] satisfying L( fH,∅, r) = L( fH,∅, YT ).

4.2 Social welfare

We analyze the social welfare achieved in the PBE of our game. In general, social welfare
refers to the total expected payoffs of all players in the game. In our setting, the social welfare
of our game is defined to be the total ex-ante expected payoff of Alice and Bob excluding any
payoff for the market institution. Alice’s total expected payoff includes her market scoring
rule payoff and her outside payoff.

Since all separating PBE fully aggregate information, they all result in the same (maxi-
mized) total ex-ante expected payoff inside the market—all that changes is how Alice and
Bob split this payoff—and the same outside payoff for Alice. If the outside payoff function
Q(·) is convex, we show in Lemma 6 that Alice’s expected outside payoff is also maxi-
mized in any separating PBE of our game. Therefore, given a convex Q(·), social welfare is
maximized at any separating PBE. We prove this claim in Theorem 6.
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Lemma 6 If Q(·) is convex, among all PBE of the game, Alice’s expected outside payoff is
maximized in any separating PBE.

Proof Consider an arbitrary PBE of this game. Let V denote the union of the supports of
Alice’s strategy after receiving the H and the T signals at this PBE. Let uG

A denote Alice’s
expected outside payoff at this PBE and let uS

A denote Alice’s expected outside payoff at
any separating PBE. We’ll prove below that uG

A ≤ uS
A. We simplify our notation by using

P(SA, SB) to denote P(SA = sA, SB = sB).

uG
A =

∑
v∈V

(P(H, H)σH (v) + P(T, H)σT (v))

Q

(
P(H, H)σH (v)

P(H, H)σH (v)+P(T, H)σT (v)
fH H + P(T, H)σT (v)

P(H, H)σH (v) + P(T, H)σT (v)
fT H

)

+ (P(H, T )σH (v) + P(T, T )σT (v))

Q

(
P(H, T )σH (v)

P(H, T )σH (v) + P(T, T )σT (v)
fH T + P(T, T )σT (v)

P(H, T )σH (v) + P(T, T )σT (v)
fT T

)

≤
∑
v∈V

(P(H, H)σH (v)Q( fH H ) + P(H, T )σH (v)Q( fH T )

+ P(T, H)σT (v)Q( fT H ) + P(T, T )σT (v)Q( fT T ))

= P(H, H)Q( fH H )+P(H, T )Q( fH T )+P(T, H)Q( fT H )+P(T, T )Q( fT T )

= uS
A (23)

where inequality (23) was derived by applying the convexity of Q(·). �	
Theorem 6 If Q(·) is convex, among all PBE of the game, social welfare is maximized at
any separating PBE.

Proof By definition, at any separating PBE, the total MSR payoff is maximized since infor-
mation is fully aggregated. By Lemma 6, any separating PBE maximizes Alice’s expected
outside payoff if Q(·) is convex. Therefore, any separating PBE maximizes the social welfare.

�	
4.3 Alice’s total expected payoff

In this section, we compare the multiple PBE of our game in terms of Alice’s total expected
payoff. If Alice’s total expected payoff at a particular PBE is greater than her total expected
payoff in many other PBE of this game, it gives us confidence that she is likely to choose to
play this particular PBE in practice.

First, we compare Alice’s expected payoff in the multiple separating PBE of our game. We
show in Theorem 7 that the separating PBE SE1 maximizes Alice’s expected payoff among
all separating PBE of this game. This is easy to see when fH,∅ ≥ YT since the separating
PBE SE1 is also the truthful PBE of this game. Otherwise, if fH,∅ < YT , YT is the minimum
deviation from fH,∅ that Alice can report in order to convince Bob that she has the H signal.

Theorem 7 Among all pure strategy separating PBE of our game, Alice’s expected payoff
is maximized in the pure strategy separating PBE SE1 as stated in (12).

Proof In all separating PBE, Alice’s expected outside payoff is the same.
By Lemma 2, in any separating PBE, Alice must report fT,∅ after receiving the T signal.

Therefore, Alice’s expected payoff after receiving the T signal is the same at any separating
PBE.
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When fH,∅ ≥ YT , according to Theorem 1, Alice reports fH,∅ after receiving the H signal
and this is the maximum expected payoff she could get after receiving the H signal.

When fH,∅ < YT , after receiving the H signal, Alice’s strategy in SE1 is to report YT . She
is strictly worse off reporting any value greater than YT after receiving the H signal in any
PBE. For rA < YT , if Y−H < Y−T , it is only possible for Alice to report rA ∈ [Y−H , Y−T )

after receiving the H signal at any separating PBE. However, reporting rA ∈ [Y−H , Y−T )

makes Alice strictly worse off than reporting YT because

rA < Y−T ⇒ L( fH,∅, YT ) ≤ L( fH,∅, Y−T ) < L( fH,∅, rA). (24)

where the inequality L( fH,∅, YT ) ≤ L( fH,∅, Y−T ) is due to Proposition 3. Therefore, when
fH,∅ ≤ YT , the separating PBE in which Alice reports YT maximizes Alice’s expected payoff
after receiving the H signal.

Hence, the separating PBE SE1 maximizes Alice’s expected payoff among all separating
PBE of our game. �	

Theorem 7 suggests that SE1 is likely a desirable PBE of our game. In Theorems 8 and 9,
we compare Alice’s expected payoff in SE1 with her expected payoff in the pooling PBE of
this game. Again, when fH,∅ ≥ YT , SE1 is essentially the truthful PBE and therefore Alice’s
expected payoff is higher in SE1 than in any pooling PBE for convex Q(·). When fH,∅ < YT ,
the relationship is less clear. In Theorem 9, we show that, if k ∈ (max(Y−H , Y−T ), YT )\{ fT,∅}
satisfies inequality (25), then Alice’s expected payoff in SE1 is greater than her expected
payoff in the pooling PBE P E1(k).

Theorem 8 If Q(·) is convex, YH ≥ YT and fH,∅ ≥ YT , Alice’s expected payoff is maximized
in the pure strategy separating PBE SE1 among all PBE of our game.

Proof By Lemma 6, any separating PBE maximizes Alice’s expected outside payoff if Q(·)
is convex. When fH,∅ ≥ YT , SE1 is the truthful PBE and strictly maximizes Alice’s expected
market scoring rule payoff. �	
Theorem 9 If Q(·) is convex, YH ≥ YT , and fH,∅ < YT , Alice’s expected payoff in the
pure strategy separating PBE SE1 is greater than her expected payoff in P E1(k) for any
k ∈ (max(Y−H , Y−T ), YT )\{ fT,∅} if k satisfies inequality (25) below.

P(sA = H)L( fH,∅, YT ) ≤ P(sA = H)L( fH,∅, k) + P(sA = T )γ (k)L( fT,∅, k). (25)

Proof By Lemma 6, if Q(·) is convex, then any separating PBE maximizes Alice’s expected
outside payoff.

Fix a particular k ∈ (Y−T , min{YH , YT }). Compared to Alice’s expected payoff when
using a truthful strategy, Alice’s expected payoff in SE1 given in Theorem 1 is less by
P(sA = H)L( fH,∅, YT ), and Alice’s payoff in P E1(k) is less by P(sA = H)L( fH,∅, k) +
P(sA = T )γ (k)L( fT,∅, k). Therefore, if Alice’s expected payoff SE1 is greater than or equal
to Alice’s expected payoff in P E1(k), then we must have P(sA = H)L( fH,∅, YT ) ≤ P(sA =
H)L( fH,∅, k) + P(sA = T )γ (k)L( fT,∅, k), which is stated in inequality (25). �	

Note that inequality (25) is automatically satisfied for any k ≤ r where r is the unique
value in [0, fH,∅] satisfying L( fH,∅, r) = L( fH,∅, YT ) since

P(sA = H)L( fH,∅, YT ) = P(sA = H)L( fH,∅, r) ≤ P(sA = H)L( fH,∅, k) (26)

< P(sA = H)L( fH,∅, k) + P(sA = T )γ (k)L( fT,∅, k). (27)

However, for k ≥ r , whether k satisfies inequality (25) depends on the prior distribution and
the outside payoff function.
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4.4 Bob’s expected payoff

In this section, we compare all separating PBE of our game from Bob’s perspective. If Bob’s
expected payoff at a particular PBE is greater than his expected payoff in many other PBE of
this game, then Bob is more likely to choose to play this particular PBE in practice. We show
below that among all separating PBE of our game, Bob’s expected payoff is maximized in
the separating PBE SE2 in Eq. (28), which is the same as SE2(YH ) defined in Eq. (57) in
Appendix 5. We state SE2 below for convenience. The proof of Theorem 10 is included in
Appendix 9.

Theorem 10 Among all pure strategy separating PBE of our game, Bob’s expected payoff
is maximized in the following pure strategy separating PBE SE2.

SE2 :
⎧⎨
⎩

σH (YH ) = 1, σT ( fT,∅) = 1

μsB ,rA (H) =
{

1, if rA ∈ [YH , 1]
0, if rA ∈ [0, YH )

(28)

5 Extensions

We have developed our results for the basic setting, with LMSR, two players, two stages,
and binary signals for each player. In this section, we extend our separating PBE results to
other market scoring rules. We also consider an extension of our setting where the outside
incentive is uncertain, but occurs with a fixed probability. We show that this uncertainty is
detrimental to information aggregation and there does not exist any separating PBE in this
setting.

5.1 Other market scoring rules

For our basic model using LMSR, we characterize a necessary and sufficient condition for a
separating PBE to exist. In this section, we generalize this condition for other MSR markets
using strictly proper scoring rules. The main difficulty in this generalization is that, for an
arbitrary MSR, YsA and Y−sA for sA ∈ {H, T } may not be well defined, whereas they are
always well defined for LMSR because the loss function is not bounded from above. As a
result, when generalizing the condition, we need to take into account of the cases when YsA

and/or Y−sA are not well defined.
As defined in Sect. 2.1, let m(x, p) denote a strictly proper scoring rule of a binary random

variable X where x is the realization of X and p is the reported probability of x = 1. Then
the loss function Lm( fsA,∅, rA) for the strictly proper scoring rule m(x, p) can be defined as
follows:

Lm( fsA,∅, rA)= fsA,∅{m(1, fsA,∅) − m(1, rA)}+(1 − fsA,∅){m(0, fsA,∅) − m(0, rA)}
(29)

For a particular MSR, a sufficient condition for a separating PBE to exist can be expressed
by the the following two inequalities.

Lm( fT,∅, 1) ≥ ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ] (30)

Lm( fH,∅, max( fH,∅, YT )) ≤ ESB [Q( fH,SB ) − Q( fT,SB ) | SA = H ] (31)

If inequality (30) is satisfied, we know that YT is well defined. Then, if inequality (31)
is also satisfied, reporting max( fH,∅, YT ) for Alice is not dominated by reporting fH,∅ after
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receiving the H signal. So if both inequalities are satisfied, then there exists a separating PBE
where Alice reports max( fH,∅, YT ) after receiving the H signal. Note that if inequality (30)
is violated, then the quantity YT is not well defined, so inequality (31) is not a well defined
statement as well.

Similarly, another sufficient condition for a separating PBE is given by the following two
inequalities.

Lm( fT,∅,∅) ≥ ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ] (32)

Lm( fH,∅, Y−T ) ≤ ESB [Q( fH,SB ) − Q( fT,SB ) | SA = H ] (33)

Again, inequality (32) ensures that Y−T is well-defined. If inequality (33) is satisfied, then
there exists a belief for Bob such that for Alice, reporting Y−T is not dominated by reporting
fH,∅ after receiving the H signal. Therefore, these two inequalities ensure that there exists a
separating PBE where Alice reports Y−T after receiving the H signal.

We show below in Theorem 11 that satisfying at least one of these two pairs of inequalities
is necessary and sufficient for a separating PBE to exist for any MSR.

Theorem 11 A separating PBE of our game exists if and only if at least one of the pair of
inequalities (30) and (31) and the pair of inequalities (32) and (33) is satisfied.

We include the complete proof in Appendix 10.

5.2 Uncertain outside incentive

In our basic model, Alice’s outside incentive is certain and common knowledge. In this
section, however, we show that any uncertainty about Alice’s outside incentive could be
detrimental to information aggregation. Suppose that there is a fixed probability α ∈ (0, 1)

for Alice to have the outside payoff. Even if the value of α is common knowledge, information
loss in equilibrium is inevitable if Alice has a sufficiently large outside incentive. In particular,
when Alice has an outside payoff and has received the T signal, she can report fH,∅ to pretend
not to have the outside payoff and to have received the H signal. This results in these two types
pooling, so the overall equilibrium is, at best, semi-separating and there is information loss.

Theorem 12 Suppose that Alice has the outside payoff with a fixed probability α ∈ (0, 1),
which is common knowledge. If fH,∅ < YT , then there does not exist any PBE in which
Alice’s type with the H signal and no outside payoff separates from her type with the T
signal and the outside payoff.

Proof Proof by contradiction. Suppose that a separating PBE exists. At this separating PBE,
with probability (1−α), Alice reports fH,∅ after receiving the H signal and reports fT,∅ after
receiving the T signal. To be consistent with Alice’s strategy, Bob’s belief on the equilibrium
path must be μsB , fH,∅(H) = 1 and μsB , fT,∅(H) = 0. Given this belief, however, when Alice
has the outside payoff, she strictly prefers to report fH,∅ after receiving the T signal since
YT > fH,∅, which is a contradiction. �	

6 Connection to Spence’s job market signaling game

In this section, we describe the connection between a subset of separating PBE of our game
and a set of separating PBE of Spence’s job market signaling game [28]. When a separating
PBE exists for our game, YH ≥ YT holds and there exists a set of separating PBE where Alice
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reports rA ∈ [max(Y−H , YT ), YH ] after receiving H signal. If in addition Y−H ≤ Y−T also
holds, then there also exists a set of separating PBE where Alice reports rA ∈ [Y−H , Y−T ]
after receiving the H signal. In the following analysis, we consider a set of separating PBE
where Alice reports rA ∈ [max( fH,∅, YT ), YH ] after receiving the H signal, which is a subset
of the first set of separating PBE described above, and we map these separating PBE to the
separating PBE of the signaling game.

We first describe the setting of a signaling game using the notation of Mas-Colell et al. [23].
In the signaling game, there are two types of workers with productivities θH and θL , with
θH > θL > 0, and these productivities are not observable. Before entering the job market,
each worker can get some amount of education, and the amount of education that a worker
receives is observable. Getting education does not affect a worker’s productivity, but the
high-productivity workers in the job market may use education to distinguish them from the
low-productivity workers. The cost of obtaining education level e for a type θ worker is given
by the twice continuously differentiable function c(θ, e), with c(θ, 0) = 0, ∂

∂e c(θ, e) > 0,
∂2

∂e2 c(θ, e) > 0, c(θH , e) < c(θL , e), for all e > 0 and ∂
∂e c(θH , e) < ∂

∂e c(θH , e),∀e > 0.
Both the cost and the marginal cost of education are lower for workers with productivity
θH . Each worker can choose to work at home or work for an employer. Working at home
earns the worker no wage. If the worker chooses to work for an employer, then his wage
depends on the employer’s belief about the worker’s productivity based on the worker’s
education level. If a type θ worker chooses education level e and receives wage ω, then his
payoff, denoted by u(ω, e | θ), is equal to his wage less the cost of getting education, i.e.
u(ω, e | θ) = ω − c(e, θ).

In separating PBE of the signaling game, many education levels for the high productivity
worker are possible and the low productivity worker chooses no education. In particular, any
education level in some range [ẽ, e1] for the high productivity workers can be sustained at
a PBE of this game. Intuitively, the education level of the high productivity worker cannot
be below ẽ in a separating PBE because, if it were, the low productivity worker would find
it profitable and pretend to be of high productivity by choosing the same education level.
On the other hand, the education level of the high productivity worker cannot be above e1

because, if it were, the high productivity worker would prefer to get no education instead,
even if this meant that he would be considered to be of low productivity.

Consider our setting when a separating PBE exists (i.e. YH ≥ YT ), we can map elements
of our game to the signaling game. We can also map separating PBE of our game where Alice
reports rA ∈ [max( fH,∅, YT ), YH ] to the separating PBE of the signaling game. We outline
details of this mapping in Table 1.

Alice’s two types H and T in our setting correspond to the two types of workers with
productivities θH and θL . If Alice chooses to report a value rA > fH,∅, she incurs a loss in the
MSR payoff for either type. This loss is the cost of misreporting and corresponds to the cost
of getting education for either worker type in the signaling game. Moreover, the loss function
and the cost function have similar properties: they are increasing and convex in education
level/report and they are lower for the θH /H type. Also the marginal loss and cost functions
are lower for the θH /H type. As a result of these properties, in both settings, there exists a
range of possible values for the education level/report of the θH /H type reports whereas the
θL /T type chooses no education/does not misreport at separating PBE.

In the signaling game, the fundamental reason that education can serve as a signal is that
the marginal cost of education depends on a worker’s type. The marginal cost of education
is lower for a high-productivity worker

(
∂
∂e c(θH , e) < ∂

∂e c(θL , e)
)
. As a result, a θH type

worker may find it worthwhile to get some positive level of education e > 0 to raise her
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Table 1 Comparison between our setting and Spence’s job market signaling game

Spence’s job market signaling game Our setting

θH , high productivity worker H , Alice’s H type

θL , low productivity worker T , Alice’s T type

e > 0, education level rA > fH,∅, Alice’s report rA

c(θ, e), cost of education as a function of the
level e and the worker type θ

L( fsA,∅, rA), loss function with respect to report rA
and type sA

∂
∂e c(θ, e) > 0,∀e > 0, cost of education is

increasing in education level

∂
∂rA

L( fsA,∅, rA) > 0, ∀rA > fH,∅, loss is
increasing in Alice’s report

∂2

∂2e
c(θ, e) > 0, ∀e > 0, cost is convex in

education level

∂2

∂r2
A

L( fsA,∅, rA) > 0, ∀rA > fH,∅, loss is convex

in Alice’s report

c(θH , e) < c(θL , e), ∀e > 0, cost is lower for
high productivity worker

L( fH,∅, rA) < L( fT,∅, rA), ∀rA > fH,∅, loss is
lower for Alice’s H type

∂
∂e c(θH , e) < ∂

∂e c(θL , e), ∀e > 0, marginal
cost is lower for high productivity worker

∂
∂rA

L( fH,∅, rA) < ∂
∂rA

L( fT,∅, rA), ∀rA > fH,∅,
marginal loss is lower for Alice’s H type

e1, highest education level for high productivity
worker among all separating PBE

YH , highest report for H type among all separating
PBE

ẽ, lowest education level for high productivity
worker among all separating PBE

max( fH,∅, YT ), lowest report for H type among the
subset of separating PBE

wage by some positive amount whereas a type θL worker may not be willing to get the same
level of education in return for the same amount of wage increase. As a result, by getting
an education in the range [ẽ, e1], a high-productivity worker could distinguish themselves
from their low-ability counterparts. Analogously, in our setting, the fundamental reason that
a separating PBE where Alice reports rA ∈ [max( fH,∅, YT ), YH ] exists is that reporting a
value rA > fH,∅ has a marginally lower expected loss in MSR payoff for Alice’s H type
than for Alice’s T type. Thus, Alice’s H type may be willing to report a value rA much
higher than fH,∅ in order to increase her outside payoff whereas Alice’s T type may not be
willing to report rA for the same amount of increase in her outside payoff. Therefore, when
YH ≥ YT , there exists a range of reports, [max( fH,∅, YT ), YH ], such that Alice’s H type can
distinguish herself from Alice’s T type in our game.

Note that, if Y−H ≤ Y−T holds in addition to YH ≥ YT , it is also possible to map the set of
separating PBE where Alice reports rA ∈ [Y−H , Y−T ] to the separating PBE of the signaling
game. The only caveat is that, instead of mapping education e directly to Alice’s report rA,
we need to map education e to the distance between Alice’s report rA and fH,∅. We omit the
description of the mapping because it is nearly identical to Table 1. However, many instances
of our market game have separating PBE that cannot be mapped to the separating PBE of
the signaling game. For example, when YH > fH,∅ > YT > Y−H , the set of separating PBE
where Alice reports rA ∈ [YT , fH,∅) after receiving the H signal is left unmapped. As a class
of games, our market game in general has more equilibria than the signaling game.

7 Conclusion and future directions

We study the strategic play of prediction market participants when there exist outside incen-
tives for the participants to manipulate the market probability. The main insight from our
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analysis is that conflicting incentives inside and outside of a prediction market do not neces-
sarily damage information aggregation in equilibrium. In particular, under certain conditions,
there are equilibria in which full information aggregation can be achieved. However, there
are also many situations where information loss is inevitable.

Although we only consider a 2-player model, our results remain valid for a much more
general setting. Our results can be easily extended to a setting in which multiple participants
trade in the market after Alice and before the end of the market, as long as each participant
only trades once in the market. Moreover, if there are participants trading before Alice in
the market, our results can be extended to this setting if all of the private information of the
participants trading before Alice are completely revealed before Alice’s stage of participation.

An immediate future direction is to consider a more general setting when Alice’s signal
has more than two realizations. As suggested by our analysis, with more realized signals,
Alice’s equilibrium behavior could become much more complicated depending on how these
realized signals influence her payoffs from inside and outside of the market.

More broadly, one important future direction is to better understand information aggrega-
tion mechanisms in the context of decision making and to design mechanisms to minimize or
control potential loss in information aggregation and social welfare when there are conflicting
incentives within and outside of the mechanism.
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Appendix 1: Proof of Proposition 1

Proof The partial derivative of the loss function with respect to rA is

∂

∂rA
L( fsA,∅, rA) = rA − fsA,∅

rA(1 − rA)
. (34)

It is negative for rA < fsA,∅, zero for rA = fsA,∅ and positive for rA > fsA,∅. Thus, the loss
function is strictly increasing for rA ∈ [ fsA,∅, 1) and strictly decreasing for rA ∈ (0, fsA,∅].
In addition, note that L( fsA,∅, rA) → ∞ as rA → 0 or rA → 1 for any fixed fsA,∅. Hence,
the loss function has the range [0,∞) for both rA ∈ [ fsA,∅, 1) and rA ∈ (0, fsA,∅].

The partial derivative of the loss function with respect to fsA,∅ is

∂

∂ fsA,∅
L( fsA,∅, rA) = log

(
fsA,∅

1 − fsA,∅
1 − rA

rA

)
. (35)

It equals zero when fsA,∅ = rA, negative when fsA,∅ < rA and positive when fsA,∅ > rA.
Therefore, for a fixed rA ∈ [0, 1], L( fsA,∅, rA) is strictly decreasing for fsA,∅ ∈ [0, rA] and
strictly increasing for fsA,∅ ∈ [rA, 1]. �	

Appendix 2: Example 1

Example 1 Suppose the outside payoff function is Q(rB) = rB , and the prior distribution is
given by Table 2.

It is easy to compute fH,∅ = 0.64, fT,∅ = 0.54, fH,H = 1, fH,T = 0.1, fT,H = 0.9,
and fT,T = 0.
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Table 2 An example prior
distribution

Each cell gives the value of
P(X, SA, SB ) for the
corresponding realizations of X ,
SA , and SB

X = 1 X = 0

SA = H SA = T SA = H SA = T

SB = H 0.54 0.054 SB = H 0 0.006

SB = T 0.036 0 SB = T 0.324 0.04

Alice’s expected loss in MSR payoff when receiving the T signal but changing the market
probability to fH,∅ is

L( fT,∅, fH,∅) = fT,∅ log
fT,∅
fH,∅

+ (1 − fT,∅) log
1 − fT,∅
1 − fH,∅

=
(

0.54 log
0.54

0.64
+ 0.46 log

0.46

0.36

)
≈ 0.021. (36)

Alice’s expected gain in outside payoff when receiving the T signal but convincing Bob that
she has the H signal is

ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ]
= P(SB = H |SA = T )( fH,H − fT,H ) + P(SB = T |SA = T )( fH,T − fT,T )

= 0.6(1 − 0.9) + 0.4(0.1 − 0) (37)

= 0.1. (38)

It is clear that L( fT,∅, fH,∅) < ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ]. Thus, inequality (5)
is satisfied and a truthful PBE does not exist.

In addition to the above derivation, we note that even though a truthful PBE does not exist
for this example, a separating PBE does exist. The intuition behind this can be shown by
calculating and comparing the quantities YH , YT , and fH,∅, as illustrated below. We solve
for YT by solving the following equation:

L( fT,∅, YT ) = ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ] (39)

⇒ 0.54 log
0.54

YT
+ 0.46 log

0.46

1 − YT
= 0.1 (40)

⇒ YT ≈ 0.747 (41)

Similarly, we solve for YH below:

L( fH,∅, YH ) = ESB [Q( fH,SB ) − Q( fT,SB ) | SA = H ] (42)

⇒ 0.64 log
0.64

YH
+ 0.36 log

0.36

1 − YH
= 0.1 (43)

⇒ YH ≈ 0.827 (44)

The above calculations show that we have fH,∅ < YT < YH . Thus, a truthful PBE does
not exist because if Alice reports fH,∅ in the first stage, then Bob will believe that there is
positive probability that Alice actually received a T signal but is trying to pretend that she
received a H signal, since fH,∅ < YT . However, since YH > YT , a separating equilibrium
exists because Alice can establish credibility with Bob by reporting any value in [YT , YH ] in
the first stage.
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Lastly, note that this example illustrates a prior distribution for which the signals of Alice
and Bob are independent. In Proposition 4, we will prove that when Alice and Bob have
independent signals, YH > YT must be satisfied. �	

Appendix 3: Proof of Proposition 3

Proof If fH,∅ ≥ YT ≥ fT,∅ ≥ Y−T , then it is easy to see that L( fH,∅, YT ) ≤ L( fH,∅, Y−T )

and the equality holds only when YT = fT,∅ = Y−T . The remainder of the proof focuses on
the case when fH,∅ < YT .

By definitions of YT and Y−T , we have

L( fT,∅, YT ) = L( fT,∅, Y−T ). (45)

By Proposition 1 and Y−T ≤ fT,∅ < fH,∅, we have

L( fT,∅, Y−T ) < L( fH,∅, Y−T ). (46)

By Proposition 1 and fT,∅ < fH,∅ ≤ YT , we have

L( fH,∅, YT ) < L( fT,∅, YT ). (47)

Hence, we must have L( fH,∅, YT ) < L( fH,∅, Y−T ) due to Eq. (45) and inequalities (46)
and (47), as

L( fH,∅, YT ) < L( fT,∅, YT ) = L( fT,∅, Y−T ) < L( fH,∅, Y−T ). (48)

�	

Appendix 4: Example 2

Example 2 Consider the outside payoff function and the prior distribution in Table 3. We
show below that there exists sufficiently small ε such that YH < YT .

It is easy to compute fH,∅ = 4ε, fT,∅ = 2ε, fH,H = 1, fH,T = ε
0.5−ε

, fT,H = ε
0.5−ε

,
and fT,T = 0. With this, we can calculate

L( fH,∅, YH ) = ESB [Q( fH,SB ) − Q( fT,SB ) | SA = H ]
= P(SB = H |SA = H)( fH,H − fT,H ) + P(SB = T |SA = H)( fH,T − fT,T )

= (2ε)

(
1 − ε

0.5 − ε

)
+ (1 − 2ε)

(
ε

0.5 − ε
− 0

)
.

As ε approaches 0, we have
lim
ε→0

L( fH,∅, YH ) = 0. (49)

Table 3 An example prior
distribution with ε ∈ (0, 0.25)

Each cell gives the value of
P(X, SA, SB ) for the
corresponding realizations of X ,
SA , and SB

X = 1 X = 0

SA = H SA = T SA = H SA = T

SB = H ε ε SB = H 0 0.5 − 2ε

SB = T ε 0 SB = T 0.5 − 2ε ε
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Because limε→0 fH,∅ = limε→0 4ε = 0, by definition of L( fH,∅, YH ), (49) implies that

lim
ε→0

YH = 0. (50)

Similarly, we have

L( fT,∅, YT ) = ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ]
= P(SB = H |SA = T )( fH,H − fT,H ) + P(SB = T |SA = T )( fH,T − fT,T )

= (1 − 2ε)

(
1 − ε

0.5 − ε

)
+ 2ε

(
ε

0.5 − ε
− 0

)
.

As ε approaches 0, we have
lim
ε→0

L( fT,∅, YT ) = 1. (51)

Because limε→0 fT,∅ = limε→0 2ε = 0, by definition of L( fT,∅, YT ),

lim
ε→0

L( fT,∅, YT ) = − log(1 − lim
ε→0

YT ).

Given (51), we have
lim
ε→0

YT = 1 − 1/e. (52)

Combining (50) and (52), we know that when ε is sufficiently small, YH < YT .
In addition to the above derivation, we describe some qualitative properties of the given

prior distribution, which may be helpful in highlighting the intuitions behind the YH < YT

condition. For this prior distribution, Alice is willing to report a higher value after receiving
the T signal due to the combined effect of two factors. First, note that when Alice has the T
signal, Bob is far more likely to have the H signal than the T signal for sufficiently small ε.
This is shown by

lim
ε→0

P(SB = H |SA = T ) = lim
ε→0

(1 − 2ε) = 1, (53)

lim
ε→0

P(SB = T |SA = T ) = lim
ε→0

2ε = 0. (54)

Second, Alice’s maximum gain in outside payoff when she has the T signal but manages to
convince Bob that she has the H signal is much higher when Bob has the H signal than when
he has the T signal for sufficiently small ε. When Bob has the H signal, the maximum gain
for Alice is

lim
ε→0

( fH H − fT H ) = lim
ε→0

(1 − ε

0.5 − ε
) = 1, (55)

which is greater than the maximum gain for Alice when Bob has the T signal,

lim
ε→0

( fH T − fT T ) = lim
ε→0

(
ε

0.5 − ε
− 0) = 0. (56)

Thus, when Alice has the T signal, Bob is more likely to have the H signal, resulting
in a higher expected gain in outside payoff for Alice by convincing Bob that she has the H
signal. This intuitively explains why YT is high.

In Example 1, we describe a prior distribution and outside function and show that a truthful
PBE does not exist when fH,∅ < YT ≤ YH . Note that guaranteeing fH,∅ < YT ≤ YH is not
the only way for a truthful PBE to fail to exist. For instance, this example shows that, when
fH,∅ ≤ YH < YT , a truthful PBE also fails to exist. �	
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Appendix 5: Proof of Theorem 3

Proof If YT ≥ fH,∅, the interval [max(Y−H , YT ), YH ] can be written as [max( fH,∅, YT ), YH ]
because Y−H ≤ fH,∅. If YT < fH,∅, the interval [max(Y−H , YT ), YH ] can be split into
two intervals [max(Y−H , YT ), fH,∅) and [max( fH,∅, YT ), YH ]. In the following, we first
consider the case rA ∈ [max( fH,∅, YT ), YH ]; then, for YT < fH,∅, we consider the case
rA ∈ [max(Y−H , YT ), fH,∅).

First, suppose that Alice reports rA ∈ [max( fH,∅, YT ), YH ] after receiving the H signal.
Fix a particular k ∈ [max( fH,∅, YT ), YH ]. We prove that the following pair of Alice’s strategy
and Bob’s belief forms a separating PBE of our game:

SE2(k) :
⎧⎨
⎩

σ S
H (k) = 1, σ S

T ( fT,∅) = 1

μS
sB ,rA

(H) =
{

1, if rA ∈ [k, 1]
0, if rA ∈ [0, k)

(57)

We’ll show that Alice’s strategy is optimal given Bob’s belief. If Alice receives the T
signal, she does not report any rA > YT by definition of YT . She may be indifferent between
reporting YT and fT,∅. For any rA < YT , we have rA < k and Bob’s belief sets μS

sB ,rA
(H) = 0

for any rA < k. So for rA < YT , reporting rA = fT,∅ dominates reporting any other value.
Thus, it is optimal for Alice to report fT,∅ when having the T signal.

If Alice receives the H signal, according to the definitions of Y−H and YH , she would only
report values in [Y−H , YH ]. Given Bob’s belief, Alice would only report some rA ∈ [k, YH ].
Because fH,∅ ≤ k, Alice maximizes her expected MSR payoff by reporting rA = k for any
rA ∈ [k, YH ]. Therefore, it is optimal for Alice to report rA = k after receiving the H signal.

We can show that Bob’s belief is consistent with Alice’s strategy by mechanically applying
Bayes’ rule (argument omitted). Hence, for each k ∈ [max(YT , fH,∅), YH ], SE2(k) is a
separating PBE of our game.

Next, we assume YT < fH,∅ and consider that Alice reports rA ∈ [max(Y−H , YT ), fH,∅)
after receiving the H signal. For every k ∈ [max(Y−H , YT ), fH,∅), we prove that the follow-
ing pair of Alice’s strategy and Bob’s belief forms a separating PBE of our game:

SE3(k) :
⎧⎨
⎩

σ S
H (k) = 1, σ S

T ( fT,∅) = 1

μS
sB ,rA

(H) =
{

1, if rA = k
0, if rA ∈ [0, k) ∪ (k, 1]

(58)

We’ll show that Alice’s strategy is optimal given Bob’s belief. If Alice receives the T
signal, she does not report any rA > YT by definition of YT and is at best indifferent between
reporting YT and reporting fT,∅. For any rA ∈ [0, YT ), Bob’s belief sets μS

sB ,rA
(H) = 0 since

k ≥ YT . For any rA ∈ [0, YT ), Alice maximizes her expected market scoring rule payoff by
reporting rA = fT,∅. Thus, it is optimal for Alice to report fT,∅ when having the T signal.

If Alice receives the H signal, for any rA ∈ [0, 1]\{k}, Alice maximizes her expected
MSR payoff by reporting fH,∅. By definition, we know that Y−H ≤ k < fH,∅. Given Bob’s
belief

L( fH,∅, k) ≤ L( fH,∅, Y−H ) = ESB [Q( fH,SB ) − Q( fT,SB ) | sA] (59)

By switching from reporting fH,∅ to reporting k, Alice’s expected gain in outside payoff is
greater than or equal to her loss in her expected MSR payoff. So she weakly prefers reporting
k to reporting fH,∅. By enforcing the consistency with Bob’s belief, Alice’s strategy must be
to report k after receiving the H signal.
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We can show that Bob’s belief is consistent with Alice’s strategy by mechanically applying
Bayes’ rule (argument omitted). Hence, if YT < fH,∅, for each k ∈ [max(Y−H , YT ), fH,∅),
SE3(k) is a separating PBE of this game. �	

Appendix 6: Proof of Theorem 4

Proof If Y−H ≤ Y−T , for every k ∈ [Y−H , Y−T ], we prove the following pair of Alice’s
strategy and Bob’s belief forms a separating PBE of our game:

SE4(k) :
⎧⎨
⎩

σ S
H (k) = 1, σ S

T ( fT,∅) = 1

μS
sB ,rA

(H) =
{

0, if rA ∈ (k, 1]
1, if rA ∈ [0, k]

(60)

We’ll show that Alice’s strategy is optimal given Bob’s belief. If Alice receives the T signal,
she does not report any rA < Y−T by definition of YT and is at best indifferent between
reporting Y−T and fT,∅. For any rA > Y−T , because Bob’s belief sets μS

sB ,rA
(H) = 0,

reporting fT,∅ dominates reporting any other value in this range. Thus, it is optimal for Alice
to report fT,∅ when having the T signal.

If Alice receives the H signal, for any rA ∈ (k, 1], Alice maximizes her expected MSR
payoff by reporting rA = fH,∅. For any rA ∈ [Y−H , k], Alice maximizes her expected MSR
payoff by reporting rA = k. By definition of Y−H , Alice is better off reporting k than reporting
fH,∅ since

L( fH,∅, k) ≤ L( fH,∅, Y−H ) = ESB [Q( fH,SB ) − Q( fT,SB ) | sA] (61)

Therefore, it is optimal for Alice to report k after receiving the H signal.
We can show that Bob’s belief is consistent with Alice’s strategy by mechanically applying

Bayes’ rule (argument omitted). Hence, if Y−H ≤ Y−T , for every k ∈ [Y−H , Y−T ], SE4(k)

is a separating PBE. �	

Appendix 7: Proof of Proposition 5

Proof The existence of a separating PBE requires YH ≥ YT by Theorem 2. By Lemma 2,
we have σT ( fT,∅) = 1 at any separating PBE.

By Theorem 3, for every rA ∈ [max(Y−H , YT ), YH ], there exists a pure strategy separating
PBE in which Alice reports rA with probability 1 after receiving the H signal. Now suppose
that Bob’s belief satisfies the domination-based refinement. Consider 2 cases.

(1) Assume that fH,∅ > YT . Then we must have fH,∅ ∈ [max(Y−H , YT ), YH ]. By Lemma 5,
Bob’s belief must set μsB , fH,∅(T ) = 0. Thus, reporting fH,∅ is strictly optimal for Alice
since reporting fH,∅ strictly maximizes Alice’s expected market scoring rule payoff and
weakly maximizes Alice’s expected outside payoff. Therefore, there are no longer pure
strategy separating PBE in which Alice reports rA ∈ [max(Y−H , YT ), YH ]\{ fH,∅} after
receiving the H signal.

(2) Assume that fH,∅ ≤ YT . Then we must have Y−H < YT , and the interval
[max(Y−H , YT ), YH ] can be reduced to [YT , YH ]. By Lemma 5, Bob’s belief must
set μsB ,rA (T ) = 0 for any rA ∈ (YT , YH ]. If Alice receives the H signal, given
Bob’s belief, Alice would not report any rA ∈ (YT , YH ] because there always exists
a r ′

A ∈ (YT , rA) such that reporting r ′
A is strictly better than reporting rA for Alice.
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Therefore, there no longer exist pure strategy separating PBE in which Alice reports
rA ∈ [max(Y−H , YT ), YH ]\{YT } after receiving the H signal.

Hence, Alice would not report rA ∈ [max(Y−H , YT ), YH ]\ max( fH,∅, YT ) after receiving
the H signal at any separating PBE satisfying the domination-based belief refinement.

By Theorem 4, if YH ≥ YT and Y−H ≤ Y−T , for every rA ∈ [Y−H , Y−T ], there exists a
pure strategy separating PBE in which Alice reports rA with probability 1 after receiving the H
signal. By Lemma 5, Bob’s belief must set μsB ,rA (T ) = 0 for any rA ∈ [Y−H , Y−T ). Then, if
Alice receives the H signal, given Bob’s belief, Alice would not report any rA ∈ [Y−H , Y−T )

because there always exists a r ′
A ∈ (rA, Y−T ) such that reporting r ′

A is strictly better than
reporting rA for Alice.

Also, Alice would not report Y−T after receiving the H signal for the following reasons.
We consider 2 cases. If fH,∅ ≥ YT , then Alice’s MSR payoff is strictly better by reporting
fH,∅ than reporting Y−T . Otherwise, if fH,∅ < YT , we know that Y−T < YT and hence, by
Proposition 3, L( fH,∅, Y−T ) < L( fH,∅, YT ). Consider rA = YT + ε for a small ε > 0 such
that L( fH,∅, Y−T ) > L( fH,∅, rA). Such an ε must exist because as ε → 0, L( fH,∅, rA) →
L( fH,∅, YT ). Alice’s MSR payoff is strictly better by reporting rA than reporting Y−T . Given
Bob’s belief, we know that μsB ,rA (T ) = 0 and μsB ,Y−T (T ) ≥ 0. So Alice’s outside payoff
is weakly better when reporting rA than reporting Y−T . Therefore, reporting rA = YT + ε

strictly dominates reporting Y−T .
Hence, there are no longer pure strategy separating PBE in which Alice reports rA ∈

[Y−H , Y−T ] after receiving the H signal.
It remains to show that there exists a belief for Bob satisfying the refinement so that

Alice’s strategy σH (max( fH,∅, YT )) = 1, σT ( fT,∅) = 1 and Bob’s belief form a PBE. It
is straightforward to verify that Bob’s belief in the PBE SE1 described in (12) is such a
belief. �	

Appendix 8: Proof of Proposition 7

Proof Let r be the unique value in [0, fH,∅] satisfying L( fH,∅, r) = L( fH,∅, YT ). Consider
a PBE satisfying the domination-based refinement. We will show that there exists an ε > 0
such that if Alice receives the H signal, then reporting any rA ≤ r is strictly worse than
reporting YT + ε.

By definition of r , we have that L( fH,∅, rA) ≥ L( fH,∅, r) = L( fH,∅, YT ),∀rA ≤ r . We
consider 2 cases.

(1) rA < r : Choose any 0 < ε < r −rA, then we must have L( fH,∅, rA) > L( fH,∅, r −ε) =
L( fH,∅, YT + ε). Since the PBE satisfies the domination-based refinement, then Bob’s
belief must set μsB ,rA (T ) = 0,∀rA ∈ (YT , YH ]. Alice’s expected outside payoff by
reporting YT + ε is weakly better than her expected outside payoff by reporting rA.
Therefore, for any ε ∈ (0, r − rA), Alice is strictly worse off reporting any rA < r than
reporting YT + ε.

(2) rA = r : For any small ε > 0, we have that L( fH,∅, r) < L( fH,∅, YT + ε). However
as ε → 0, L( fH,∅, YT + ε) − L( fH,∅, r) → 0. Since r < fH,∅ < YT , if Alice
reports r after receiving H signal at any PBE, then Bob’s belief must set μsB ,r (T ) >

0. Since the PBE satisfies the domination-based refinement, then Bob’s belief must
set μsB ,YT +ε(T ) = 0, f orany 0 < ε ≤ YH − YT . Regardless of ε, Alice’s expected
outside payoff by reporting YT + ε is strictly better than her expected outside payoff by
reporting r . However, as ε approaches 0, the difference between Alice’s expected market
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scoring rule payoff for these two reports goes to 0. Hence, there must exist ε > 0 such
that Alice’s total expected payoff by reporting r is strictly less than her total expected
payoff by reporting YT + ε. �	

Appendix 9: Proof of Theorem 10

Proof We will show that among all pure strategy separating PBE of our game, Bob’s expected
payoff is maximized in SE2(YH ), defined in Eq. (57).

In all separating PBE, the sum of Alice and Bob’s expected payoffs inside the market is
the same. Thus, the separating PBE that maximizes Bob’s payoff is also the separating PBE
that minimizes Alice’s payoff.

By Lemma 2, in any separating PBE, Alice must report fT,∅ after receiving the T signal.
Therefore, Alice’s expected payoff after receiving the T signal is the same at any separating
PBE.

For any separating PBE, Alice may report r ∈ [Y−H , YH ] after receiving the H signal. In
[Y−H , YH ], reporting YH or Y−H maximizes Alice’s loss in her MSR payoff and thus mini-
mizes Alice’s expected payoff after receiving the H signal. Reporting YH corresponds to the
separating PBE SE2(YH ) and reporting Y−H corresponds to the separating PBE SE4(Y−H ).

If Y−H ≤ Y−T , the separating PBE SE4(Y−H ) exists, by the proof of Theorem 4 in
Appendix 6. We know that Y−H ≤ Y−T implies YH ≥ YT by the proof of Theorem 2. Thus,
when the separating PBE SE4(Y−H ) exists, the separating PBE SE2(YH ) also exists and
Alice’s total expected payoff at these two separating PBE are the same.

If Y−H > Y−T , the separating PBE SE4(Y−H ) does not exist. However, if any separating
PBE exists, then we must have YH ≥ YT , and the separating PBE SE2(YH ) must exist.

Hence, the separating PBE SE2(YH ) maximizes Bob’s expected payoff among all sepa-
rating PBE of our game. �	

Appendix 10: Proof of Theorem 11

Proof Sufficient condition
First, we show that satisfying at least one of the two pairs of inequalities is a sufficient

condition for a separating PBE to exist for our game.
If inequalities (30) and (31) are satisfied, we can show that SE5 is a separating PBE of

our game.

SE5 :
⎧⎨
⎩

σ S
H (max (YT , fH,∅)) = 1, σ S

T ( fT,∅) = 1

μS
sB ,rA

(H) =
{

1, if rA ∈ [YT , 1]
0, if rA ∈ [0, YT )

(62)

First, we show that Alice’s strategy is optimal given Bob’s belief. Since inequality (30) is
satisfied, YT is a well defined value in [ fT,∅, 1]. If fH,∅ < YT , then it is optimal for Alice
to report YT after receiving the H signal because her gain in outside payoff is greater than
her loss in the MSR payoff by inequality (31). Otherwise, if fH,∅ ≥ YT , then it’s optimal
for Alice to report fH,∅ after receiving the H signal. Therefore, Alice’s optimal strategy
after receiving the H signal is to report max ( fH,∅, YT ). When Alice receives the T signal,
Alice would not report any rA ≥ YT by definition of YT . Any other report rA ∈ [0, YT ) is
dominated by a report of fT,∅ given Bob’s belief. Therefore, it is optimal for Alice to report
fT,∅ after receiving the T signal. Moreover, we can show that Bob’s belief is consistent with
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Alice’s strategy by mechanically applying Bayes’ rule (argument omitted). Given the above
arguments, SE5 is a separating PBE of this game.

Similarly, if inequalities (32) and (33) are satisfied, then we can show that SE6 is a
separating PBE of our game.

SE6 :
⎧⎨
⎩

σ S
H (Y−T ) = 1, σ S

T ( fT,∅) = 1

μS
sB ,rA

(H) =
{

0, if rA ∈ (Y−T , 1]
1, if rA ∈ [0, Y−T ]

(63)

First, we show that Alice’s strategy is optimal given Bob’s belief. Since inequality (32)
is satisfied, Y−T is well defined. If Alice receives the H signal, reporting any rA ∈ [0, Y−T ]
gives her higher outside payoff than reporting any rA ∈ (Y−T , 1]. For any rA ∈ [0, Y−T ], her
outside payoff is fixed and reporting rA = Y−T maximizes her market scoring rule payoff.
Therefore, it is optimal for Alice to report rA = Y−T after receiving the H signal. If Alice
receives the T signal, she does not report any rA < Y−T by definition of Y−T . Given Bob’s
belief, she is indifferent between reporting Y−T and fT,∅. For any rA > Y−T , Bob’s belief
sets μS

sB ,rA
(H) = 0, so it is optimal for Alice to report fT,∅ to maximize her MSR payoff.

We can show that Bob’s belief is consistent with Alice’s strategy by mechanically applying
Bayes’ rule (argument omitted). Hence, SE6 is a separating PBE of our game.

Necessary condition
Second, we show that, if there exists a separating PBE of our game, then at least one of

the two pairs of inequalities must be satisfied. We prove this by contradiction. Suppose that
there exists a separating PBE of our game but at least one of the two inequalities in each of
the two pairs of inequalities is violated.

Suppose that at least one of the inequalities (30) and (31) is violated. Then, we can show
that Alice does not report any value rA ∈ [ fT,∅, 1] after receiving the H signal at any
separating PBE. We divide the argument for this into 2 cases.

(1) If inequality (30) is violated, we know that YT is not well defined. We show by con-
tradiction that Alice does not report any value in [ fT,∅, 1] after receiving the H signal.
Suppose that at a separating PBE, Alice reports rA ∈ [ fT,∅, 1] with positive probability
after receiving the H signal. Since this PBE is separating, Bob’s belief must be that
μsB ,rA (H) = 1 to be consistent with Alice’s strategy. By Lemma 2, in any separating
PBE, Bob’s belief must be μsB , fT,∅(H) = 0 and Alice must report fT,∅ after receiving
the T signal. Since inequality (30) is violated, then we have that

Lm( fT,∅, rA) ≤ Lm( fT,∅, 1) < ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ], (64)

so Alice would strictly prefer to report rA rather than fT,∅ after receiving the T signal,
which is a contradiction.

(2) Otherwise, if inequality (30) is satisfied but inequality (31) is violated, then we know that
YT is well defined. If fH,∅ ≥ YT , then inequality (31) is automatically satisfied, so we
must have that fH,∅ < YT and Lm( fH,∅, YT ) > ESB [Q( fH,SB )− Q( fT,SB ) | SA = H ].
Then Alice does not report any rA ∈ [YT , 1] after receiving the H signal because doing so
is dominated by reporting fH,∅. Next, we can show by contradiction that Alice does not
report any rA ∈ [ fT,∅, YT ) after receiving the H signal at any separating PBE. Suppose
that at any separating PBE, Alice reports rA ∈ [ fT,∅, YT ) with positive probability
after receiving the H signal. Since this PBE is separating, Bob’s belief must be that
μsB ,rA (H) = 1 to be consistent with Alice’s strategy. By Lemma 2, in any separating
PBE, Alice must report fT,∅ after receiving the T signal and Bob’s belief must be
μsB , fT,∅(H) = 0. Thus, for rA ∈ (Y−T , YT ), by definitions of YT and Y−T , Alice would
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strictly prefer to report rA rather than fT,∅ after receiving the T signal, which is a
contradiction.

Hence, if at least one of the inequalities (30) and (31) is violated, then at any separating PBE,
Alice does not report any rA ∈ [ fT,∅, 1] after receiving the H signal.

Similarly, we can show that, if at least one of the inequalities (32) and (33) is violated,
Alice does not report any value rA ∈ [0, fT,∅] after receiving the H signal at any separating
PBE. We again consider 2 cases:

(1) If inequality (32) is violated, we know that Y−T is not well defined. Then we can show
that Alice does not report any value in [0, fT,∅] after receiving the H signal. We prove
by contradiction. Suppose that at a separating PBE, Alice reports rA ∈ [0, fT,∅] with
positive probability after receiving the H signal. Since this PBE is separating, Bob’s
belief must be that μsB ,rA (H) = 1 to be consistent with Alice’s strategy. By Lemma 2,
in any separating PBE, Bob’s belief must be μsB , fT,∅(H) = 0 and Alice must report fT,∅
after receiving the T signal. Since inequality (32) is violated, we have that

Lm( fT,∅, rA) ≤ Lm( fT,∅,∅) < ESB [Q( fH,SB ) − Q( fT,SB ) | SA = T ], (65)

so Alice would strictly prefer to report rA rather than fT,∅ after receiving the T signal,
which is a contradiction.

(2) Otherwise, if inequality (32) is satisfied but inequality (33) is violated, then we know
that Y−T is well defined. Also, we must have that Lm( fH,∅, Y−T ) > ESB [Q( fH,SB ) −
Q( fT,SB ) | SA = H ]. Then Alice does not report any rA ∈ [0, Y−T ] after receiving
the H signal because doing so is dominated by reporting fH,∅. Next, We can show by
contradiction that at any separating PBE, Alice does not report any rA ∈ (Y−T , fT,∅]
after receiving the H signal. Suppose that at any separating PBE, Alice reports rA ∈
(Y−T , fT,∅] with positive probability after receiving the H signal. Since this PBE is
separating, Bob’s belief must be thatμsB ,rA (H) = 1 to be consistent with Alice’s strategy.
By Lemma 2, in any separating PBE, Alice must report fT,∅ after receiving the T signal
and Bob’s belief must be μsB , fT,∅(H) = 0. Thus, for rA ∈ (Y−T , YT ), by definitions of
YT and Y−T , Alice would strictly prefer to report rA rather than fT,∅ after receiving the
T signal, which is a contradiction.

Hence, if at least one of the inequalities (32) and (33) is violated, in any separating PBE,
Alice does not report any rA ∈ [0, fT,∅] after receiving the H signal.

Therefore, if at least one of the two inequalities in the two pairs of inequalities is violated,
then at any separating PBE, Alice does not report any rA ∈ [0, 1] after receiving the H signal.
This contradicts our assumption that a separating PBE exists for our game. �	
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