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Abstract
Work quality in crowdsourcing task sessions can change over
time due to both internal factors, such as learning and bore-
dom, and external factors like the provision of monetary in-
terventions. Prior studies on crowd work quality have focused
on characterizing the temporal behavior pattern as a result
of the internal factors. In this paper, we propose to explic-
itly take the impact of external factors into consideration for
modeling crowd work quality. We present a series of seven
models from three categories (supervised learning models,
autoregressive models and Markov models) and conduct an
empirical comparison on how well these models can predict
crowd work quality under monetary interventions on three
datasets that are collected from Amazon Mechanical Turk.
Our results show that all these models outperform the base-
line models that don’t consider the impact of monetary in-
terventions. Our empirical comparison further identifies the
random forests model as an excellent model to use in prac-
tice as it consistently provides accurate predictions with high
confidence across different datasets, and it also demonstrates
robustness against limited training data and limited access to
the ground truth.

Introduction
In recent years, crowdsourcing brings up significant benefits
in a wide range of domains by eliciting contribution from
human workers in an affordable, scalable and on-demand
manner (Greengard 2011). To further improve the produc-
tivity of crowdsourcing, one direction that researchers and
practitioners are actively working on is to understand the
actual worker behavior within crowdsourcing systems, for
example, to model worker performance in a crowdsourc-
ing task session. Along this direction, while early work
often focuses on estimating a worker’s inherent capability
level (sometimes referred to as the error rate) which is in-
dependent of the working environment, does not change
over time and determines the worker’s performance in the
tasks (Whitehill et al. 2009; Karger, Oh, and Shah 2011;
Raykar and Yu 2012), recent work suggests that worker
performance can be better modeled when taking its time-
variance (e.g. improvement or degradation over time) into
consideration (Donmez, Carbonell, and Schneider 2010;
Jung, Park, and Lease 2014; Bragg and Weld 2016).
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The time-variance of crowd work quality discussed in
these studies often describes the organic evolvement of
worker performance, perhaps due to the learning effect or
boredom. In reality, however, worker performance can also
be influenced by some external factors presented in the
working contexts, such as certain interventions embedded
in the task session. Examples of interventions in crowd-
sourcing systems include the placement of extra monetary
rewards (Harris 2011; Ho et al. 2015; Yin, Chen, and Sun
2013), the provision of performance feedback (Dow et al.
2012) and the insertion of short breaks between subsequent
tasks (Dai et al. 2015). Then, it is a natural question to
ask how should we model the fluctuation of worker perfor-
mance in a crowdsourcing task session, given both the or-
ganic evolvement and the impact of external interventions.

As granting extra bonuses to workers is a common ap-
proach that requesters use to encourage high-quality work,
in this study, we choose to focus on characterizing the im-
pact of monetary interventions on worker performance. The
goal of this paper is thus to model how crowd work qual-
ity changes in a task session given monetary intervention
on selected tasks. Properly addressing this problem is, in
fact, quite meaningful for the requesters — As shown in
Yin and Chen (2015), a good model of worker performance
under monetary intervention will enable a requester to dy-
namically control the provision of monetary interventions
such that compared to randomly placing the bonuses, the re-
quester can obtain significantly more high-quality work with
less cost.

In this paper, we take a prediction perspective for the
crowd work quality modeling problem. That is, given a spe-
cific type of tasks at hand, we assume that the requester has
already recruited several workers to work on them sequen-
tially in task sessions. The requester records whether mon-
etary intervention is provided as well as the work quality
on each task for each worker. In this way, the requester es-
sentially obtains a training dataset of worker behavior from
which he can reason about how crowd work quality changes
with the provision of monetary interventions. Then, for a
new worker who starts to work on a task session, after mon-
itoring the worker’s performance for a short period of time,
the requester aims at predicting the worker’s performance
in the current task, given whether monetary intervention is
provided on this task as well as the history of monetary in-



tervention provisions and work quality for all previous tasks
that the worker has already completed in the session. As
work quality is usually measured with discrete levels (e.g.
high-quality or low-quality) and is likely to be influenced by
the provision of monetary interventions, this problem is es-
sentially a categorical time series prediction with exogenous
inputs.

We address this prediction problem with 7 models from 3
different categories, and present an empirical comparison on
how well these models perform. Specifically, we first treat
our prediction as a classification problem and adopt three
supervised learning models (random forests, support vec-
tor machine and artificial neural network). Furthermore, we
propose two time-series models (DARX and LARX) that are
extended from existing autoregressive models to incorporate
the exogenous inputs. Finally, by assuming that the change
of work quality (or the change of some latent variable re-
lated to work quality) is governed by a Markov process,
we consider two variants of the Markov models (controlled
Markov chain and input-output hidden Markov model) for
our prediction. The performance of each model is examined
on three datasets that are collected with real crowd workers
from Amazon Mechanical Turk (MTurk) for different types
of tasks, including solving word puzzles, classifying images,
and finding typos in the text.

In addition, requesters often face some practical con-
straints when predicting crowd work quality: (1) the “cold
start” problem: requesters have very limited training data to
start with, hence their knowledge on how workers react to
monetary interventions is quite limited at the beginning; (2)
the lack of ground truth: requesters often get access to the
ground truth for only a certain number of tasks, hence they
can only evaluate a worker’s performance on some tasks in
the past when making prediction on her work quality in the
current task. Therefore, to better understand the robustness
of the models when facing realistic constraints, we conduct
further experiments to investigate the performance of differ-
ent prediction models when the requester has limited train-
ing data or limited ground truth.

Our results first confirm the necessity to explicitly take the
effects of monetary interventions into consideration when
modeling crowd work quality. In particular, compared to the
two baseline models (running accuracy and latent autore-
gressive) which only characterize the organic evolvement of
worker performance, the seven proposed models can almost
always make more accurate predictions with higher confi-
dence for the crowd work quality under monetary interven-
tions. Furthermore, our empirical comparison among differ-
ent models suggests that the random forests model is an ex-
cellent model to use for predicting crowd work quality un-
der monetary interventions in practise. On the one hand, the
random forests model presents a consistently high prediction
performance across various datasets; on the other hand, un-
like some of the other proposed models, the random forests
model demonstrates robust prediction performance, despite
of the relatively small training datasets or the limited access
to ground truth.

Related Work
Most existing work on modeling temporal crowd work
quality focuses on capturing the organic evolvement of
worker performance, and various time-series models have
been adopted in these studies. For example, Donmez, Car-
bonell, and Schneider (2010) proposed a Bayesian time se-
ries model, assuming that the latent variable dynamics that
governs the change of work quality over time has an uni-
form offset and correlation, that is xt = xt−1 + εt. Jung,
Park, and Lease (2014) relaxed this constraint and came up
with a generalized model (LAR) with xt = c+ φxt−1 + εt.
More recently, Jung and Lease (2015a) designed a general-
ized time-varying assessor model (GAM) that is a logistic
regression predictor with features extracted from both gen-
erative time-series models (e.g. the estimated φ and c from
the LAR model) and worker’s behavioral evidence, and they
showed that the prediction accuracy on crowd work quality
can be significantly improved with this model. Meanwhile,
Bragg and Weld (2016) took a different approach and used
a parametric hidden Markov model to explicitly model the
performance degradation over time.

Although many studies have explored the impact of var-
ious external interventions on the performance of crowd
workers (Mason and Watts 2010; Shaw, Horton, and Chen
2011; Huang and Fu 2013), few work has been done on
modeling temporal crowd work quality given the presence
of external (monetary) interventions. The closest prior work
we are aware of, by Yin and Chen (2015), used a first-order
input-output hidden Markov model (IOHMM) to character-
ize how work quality is influenced by bonus over time, al-
though the focus of that paper was on using the learned
IOHMM to dynamically control the placement of bonus,
hence the authors didn’t report on the prediction perfor-
mance of their model. In this paper, we enumerate 7 mod-
els from 3 categories and conduct an empirical comparison
of their performance in predicting crowd work quality un-
der monetary interventions. While we adopt some existing
models from the literature (e.g. supervised learning models,
Markov model variants), we also propose a few new mod-
els. In particular, not many time-series models are known
for the categorical prediction problems with exogenous in-
put sequence as ours — models like discrete autoregressive
(DAR) and latent autoregressive (LAR) deal with categori-
cal time series predictions without exogenous inputs (Jacobs
and Lewis 1983; Jung, Park, and Lease 2014), while mod-
els like autoregressive with exogenous inputs (ARX) deal
with predictions with exogenous inputs for continuous vari-
ables (Ljung 1998). Hence, we propose two variants of au-
toregressive models, DARX and LARX, for our prediction
problem, which are extended from the existing models. We
further study the performance of these prediction models in
more realistic scenarios, such as when the requester has lim-
ited training dataset or limited ground truth. Similar analy-
ses have been conducted previously in different contexts, for
the prediction of disengagement (Mao, Kamar, and Horvitz
2013) or predicting temporal work quality without external
interventions (Jung and Lease 2015b).

Finally, notice that while we focus on the prediction of
work quality under monetary interventions in this study, the



models in our paper can be easily generalized to predict
other crowd worker behavior of interests (e.g. engagement)
given other types of interventions, such as the provision of
feedback (Dow et al. 2012), the switch of workflows (Lin,
Mausam, and Weld 2012) and the deliver of communication
messages (Segal et al. 2016).

Prediction Models
Our prediction problem can be formally defined as the fol-
lowing: The requester has collected a training dataset Dtrain

ofN workers. Each worker in the training dataset completes
a sequence of T tasks. For each worker i(1 ≤ i ≤ N),
the requester keeps a record of the sequence of monetary in-
terventions provided to the worker ai = (a1i , a

2
i , · · · , aTi )

as well as the sequence of observed work quality yi =
(y1i , y

2
i , · · · , yTi ). For simplicity, we consider binary lev-

els of monetary interventions and work quality in this pa-
per. That is, ati ∈ {0, 1}(1 ≤ t ≤ T ) indicates whether
a monetary intervention is provided on task t to worker i,
with value 1 (or 0) representing a positive (or negative) an-
swer, and yti ∈ {0, 1} refers to the work quality of worker
i on task t, with value 1 (or 0) representing high-quality (or
low-quality) work. The requester is interested in modeling
crowd work quality under monetary interventions through
the training dataset and making predictions for a future
worker — given the sequence of monetary interventions
a = (a1, a2, · · · , al−1) provided to this worker so far as
well as the observed work quality y = (y1, y2, · · · , yl−1),
what’s the worker’s performance yl in the current task (i.e.
the l-th task) when monetary intervention level al is pro-
vided?

Supervised Learning Models
We first treat our prediction as a supervised learning prob-
lem. Take worker i’s performance in task t for an example,
yti is naturally the label for this training instance. We fur-
ther extract a feature set for this instance by focusing on a
history window of size L. In particular, the feature set xt

i
includes:
• current intervention level: ati, whether a monetary inter-

vention is provided in the current task;

• average intervention level: 1
t−1

∑t−1
j=1 a

j
i , the percentage

of tasks with monetary interventions among all previous
tasks;

• average performance: 1
t−1

∑t−1
j=1 y

j
i , the percentage of

high-quality work in all previous tasks;
• historical intervention levels: ahi (t − L ≤ h ≤ t − 1),

whether monetary intervention is provided in each of the
previous L tasks;

• historical performance: yhi (t−L ≤ h ≤ t−1), the work
quality in each of the previous L tasks;

• historical intervention changes: ah2
i −a

h1
i (t−L ≤ h1 <

h2 ≤ t − 1), the differences in monetary interventions
for any two of the previous L tasks; and

• historical performance changes: yh2
i −y

h1
i (t−L ≤ h1 <

h2 ≤ t− 1), the differences in work quality for any two

of the previous L tasks.
A transformed training dataset is created through extract-

ing the feature-label pair (xt
i, y

t
i) for all workers and all

tasks in the original training dataset. A supervised learning
model then simply constructs a function yti = f(xt

i) that
maps the features to the label. We consider three such model
in this paper:

Model 1: Random Forests (RF) Random forests (Ho
1998) is a popular ensemble learning technique for classifi-
cation and regression. Briefly speaking, many decision trees
are grown in the random forests. Each tree is constructed by
fitting a decision tree to a random subset of the training data,
and a random subset of features are considered for each split
within the tree. The prediction for a testing sample is made
by classifying it using each decision tree in the forest in turn
and then taking the majority vote among all trees.

Model 2: Support Vector Machine (SVM) The gen-
eral idea of support vector machine (Cortes and Vapnik
1995) is to map training data points from the original finite-
dimensional space to a higher-dimensional space, and search
for a hyperplane to separate data points from different
classes such that the distance between the closest two data
points of different classes is maximized. Kernel functions are
often used to construct non-linear SVM classifiers (Boser,
Guyon, and Vapnik 1992). To make a prediction for a testing
sample, we simply map it to the same higher-dimensional
space and assign a label to it according to on which side of
the hyperplane it falls.

Model 3: Artificial Neural Network (NN) Inspired by
the biological neural networks, artificial neural networks are
a family of machine learning models that can approximate
any function between features and labels (Hornik, Stinch-
combe, and White 1989). While various network structure
can be designed based on the understanding of the specific
prediction problem, in this study, we focus on a fully con-
nected multi-layer neural network — In this network, there
is a layer of input neurons, a layer of the single output neu-
ron and one or more layers of hidden neurons where each
neuron in one hidden layer is connected to all neurons in the
previous (input or hidden) layer as well as all neurons in the
next (hidden or output) layer. Specifically for our problem,
each element in the feature set xt

i activates an input neu-
ron and the single output neuron produces the label yti . A
neuron in a hidden layer takes the weighted sum of output
values from the previous layer as the input, and outputs a
value after transforming the input with an activation func-
tion. The weights between any two neurons in the network
are estimated through the training data. The prediction of a
testing sample can be completed by feeding the input neu-
rons with its features, activating hidden neurons in turn and
determining the label until the output neuron is activated.

Autoregressive Models
Next, we introduce two variants of the autoregressive models
in time series analysis to address our prediction problem.

Model 4: Discrete Autoregressive Model with Exogenous
Inputs (DARX) We extend the Discrete Autoregressive



(DAR) model (Jacobs and Lewis 1983) to incorporate the
exogenous inputs. Formally, a DARX model of order p is
defined as follows:

yti = Ity
t−Dt
i + (1− It)et (1)

where et is a binary variable with Pr(et = 1|ati) = βat
i
,

It is a binary variable with Pr(It = 1|ati) = λat
i
, Dt

randomly takes a value from the set {1, 2, · · · , p} with
Pr(Dt = d|ati) = αd

at
i
, and

∑p
d=1 α

d
at
i
= 1 for ati ∈ {0, 1}.

Importantly, notice that in the DARX(p) model, the proba-
bility distributions for random variables et, It and Dt are all
conditioned on the exogenous input ati. This is different from
the DAR model where exogenous inputs are not included as
a part. As a concrete example, consider when monetary in-
tervention is provided to worker i on task t, that is, ati = 1.
Then, the DARX(p) model states that, the value of yti (i.e.
whether worker i will submit high-quality work on task t) is
related to the previously observed work quality with proba-
bility λ1 (i.e. when It = 1) and not related with probability
1−λ1 (i.e. when It = 0). When It = 0, yti is determined by
an independent binary variable et, which is equal to 1 with
probability β1. On the other hand, when It = 1, yti equals to
the observation d(1 ≤ d ≤ p) steps ago, that is, yt−di , with
probability αd

1.
The DARX(p) model has 2p+4 parameters to estimate in

total: λa, αd
a and βa, with a ∈ {0, 1} and d ∈ {1, 2, · · · , p}.

Given the training dataset, we can search for a set of pa-
rameters that best characterizes worker’s reaction to mone-
tary interventions as a population. To make a prediction for
a testing worker with these population-level parameters on
her l-th task, we simply draw random variables el, Il and Dl

according to the estimated parameters and decide the label
of the testing sample with Equation 1.

On the other hand, parameters of a DARX(p) model can
also be estimated in an online fashion for the individual
worker that we are currently predicting on. This enables us
to make more personalized predictions — We may initial-
ize the model with the population-level parameters, that is,
λ1a = λa, αd,1

a = αd
a and β1

a = βa, and we can update
these parameters over time as we keep observing the test-
ing worker completes more tasks in the session and obtain-
ing the individual-level model estimates. One way to update
the model parameters is to take a weighted average of the
old parameters and the newly estimated individual-level pa-
rameters at each time step. For instance, suppose the test-
ing worker has completed a sequence of l − 1 tasks and the
observed sequences of a and y lead to an individual-level
model with parameters λ

′

a, αd
a

′

and β
′

a. We propose to up-
date the model parameters as the following:

λla = (1− γ)λl−1a + γλ
′

a (2)

αd,l
a =

(1− γ)λl−1a αd,l−1
a + γλ

′

aα
d
a

′

λla
(3)

βl
a =

(1− γ)(1− λl−1a )βl−1
a + γ(1− λ′

a)β
′

a

1− λla
(4)

The prediction for the l-th task is made based on λla, α
d,l
a

and βl
a, and a new set of individual-level parameters will be

estimated after we observe the actual work quality yl in the
l-th task. Notice that γ(0 ≤ γ ≤ 1) represents the learn-
ing rate for parameter updating: When γ = 0, the prediction
is always made with population-level parameters, and when
γ = 1, the prediction is made with individual-level parame-
ters exclusively.

Model 5: Latent Autoregressive Model with Exogenous
Inputs (LARX) The second autoregressive model vari-
ant is extended from the Latent Autoregressive Model
(LAR) (Jung, Park, and Lease 2014). Specifically, the LAR
model is defined as follows:

zti = c+ φzt−1i + εti (5)

Pr(yti = 1) =
1

1 + e−z
t
i

(6)

where εti ∼ N(0, σ2) is a random noise, zti is a latent vari-
able that governs the worker’s performance and the observed
work quality yti is determined stochastically by zti through
the logistic function. To take the impact of monetary inter-
ventions on work quality into consideration, we propose a
generalized LARX model, with an autoregressive order of p
and an exogenous input order of q, by replacing Equation 5
with the following formula:

zti = c+

p∑
j=1

φjz
t−j
i +

q−1∑
j=0

θja
t−j
i + εti (7)

Equation 7 is essentially an autoregressive model with ex-
ogenous inputs (ARX) (Ljung 1998). Different from the
LAR model, the LARX model assumes that the latent vari-
able zti depends linearly on both its previous values and the
exogenous inputs. Given the training dataset, a population-
level LARX model can be learned through expectation-
maximization algorithms with particle filters (Park, Car-
valho, and Ghosh 2014). While the population-level model
can be used for prediction, similar to the DARX model,
we can also make more personalized predictions by up-
dating the LARX model parameters over time (e.g. φlj =

(1−γ)φl−1j +γφ
′

j) to characterize both the population-level
behavior and the individual-level behavior.

Markov Models
Finally, we present two Markov models for predicting crowd
work quality under monetary interventions.

Model 6: Controlled Markov Chain (CMC) Controlled
Markov chain includes exogenous inputs (often referred to
as “actions”) into a Markov chain, and with further addi-
tion of reward functions, a CMC will be transformed into a
Markov decision process (MDP). A CMC of order p defines
that state transition depends only on the recent p states and
the current input, that is, Pa(Sp, · · · , S1, S0) = Pr(st =
S0|st−1 = S1, · · · , st−p = Sp, at = a) = Pr(st =
S0|st−1 = S1, · · · , s1 = St−1, at = a). For our purpose,
we take the observed work quality in each task as the “state”.
Thus, the state transition probabilities essentially represent
the distribution of the work quality yti in task t, given the
monetary intervention level ati in task t and the observed



work quality sequence (yt−pi , yt−p+1
i , · · · , yt−1i ) in the past

p tasks. A maximum-likelihood estimate of these transition
probability parameters can be obtained given the training
dataset. For the testing worker, we predict that Pr(yl =
1) = Pal(yl−p, yl−p+1, · · · , yl−1, 1).

Model 7: Input-Output Hidden Markov Model
(IOHMM) Input-output hidden Markov model (Bengio
and Frasconi 1995) is a variant of the hidden Markov
model for learning the mapping between input and output
sequences. An IOHMM of order p is defined as follows:
• inputs: ati, whether a monetary intervention is provided

in task t;
• outputs: yti , the work quality in task t;
• hidden states: zti ∈ {1, 2, · · · ,K}, the worker’s latent

state in task t, where K is the total number of hidden
states;

• transition probability: Ptr(z
t
i |z

t−1
i , · · · , zt−pi , ati),

the probability of transiting to state zti in task
t given the current input ati and state sequence
(zt−pi , zt−p+1

i , · · · , zt−1i ) in the previous p tasks; and

• emission probability: Pe(y
t
i |zti , · · · , z

t−p+1
i , ati), the

probability of submitting work of quality yti in task
t given the current input ati and the state sequence
(zt−p+1

i , · · · , zt−1i , zti) in the recent p tasks.
An IOHMM can be estimated using the Baum-Welch
expectation-maximization algorithm (Bengio and Frasconi
1996). To make predictions for the testing worker, we main-
tain and update a state belief bl(1 ≤ l ≤ l) at each
step, which is the probability distribution for the worker
to stay in different combinations of states in the p tasks
before task l. The value of yl is then computed with
bl and al. For example, when p = 1, we have bl =
(bl(1), bl(2), · · · , bl(K)) where bl(k)(1 ≤ k ≤ K) is
the estimated probability for the worker to stay in hid-
den state k in task l − 1. Then, we predict that Pr(yl =

1) =
∑K

k=1 bl(k)(
∑K

j=1 Ptr(j|k, al)Pe(1|j, al)), and after
we observe yl, the state belief is updated according to that
bl+1(j) ∝

∑K
k=1 bl(k)Ptr(j|k, al)Pe(y

l|j, al). A first-order
IOHMM is used in Yin and Chen (2015) to characterize the
impact of bonus provisions on crowdsourcing work quality.

Datasets
We examine the performance of different prediction models
on 3 datasets that are collected from real crowd workers in
Amazon Mechanical Turk (MTurk):
• PUZZLE: consists of 300 workers each completing a se-

quence of 9 word puzzle tasks in one HIT. In each task,
the worker is shown a “target” word as well as a 12×12
board filled with capital letters. The worker is asked to
find the appearances of the target word on the board as
many times as possible. The base payment for the HIT
is 45 cents. The requester provides extra performance-
contingent bonus on 37% of the tasks. When a worker
submits a high-quality answer in a bonus task by point-
ing out more than 80% of all appearances of the target

word, she can earn an extra bonus of 5 cents. This dataset
is supplied by Yin and Chen (2015).

• CLASSIFY: consists of 220 workers each completing a
sequence of 10 butterfly classification tasks in one HIT.
In each task, the worker sees 5 pictures of butterflies and
is asked to classify each picture into three categories of
interests: black swallowtail, monarch and machaon. The
base payment for the HIT is 50 cents. 29% of the tasks
come with extra bonus. When the worker submits a high-
quality answer in a bonus task by correctly classifying all
5 pictures in that task, she can earn an extra bonus of 5
cents. This dataset is collected by us and the set of but-
terfly pictures used in the tasks is taken from Lazebnik,
Schmid, and Ponce (2004).

• TYPO: consists of 80 workers each completing a se-
quence of 10 typo-finding tasks in one HIT. In each
task, there is a short paragraph of about 200 words. The
worker is asked to proofread it and find out as many ty-
pos as possible. The base payment for the HIT is 1 dol-
lar. In 49% of all the tasks, there are extra performance-
contingent bonuses. If the worker submits a high-quality
answer in a bonus task by finding out more than 75%
of all the typos, she will earn a bonus of 10 cents. This
dataset is collected by us and a similar task has been used
in the previous study (Ho et al. 2015).

Results
In this section, we report our empirical comparison results
on the performance of different models in predicting the
crowd work quality under monetary interventions.

Experimental Settings
Given a dataset, we first randomly take 80% of the work-
ers in it and collect their data as the training dataset, while
the data for the rest 20% of the workers is used as the testing
dataset. For a particular model type (e.g. random forests), we
fit a model of that type using the training dataset, and then
use the estimated model to make predictions for each worker
in the testing dataset. Since predicting the work quality in
one task often rely on information about previous tasks, we
start making predictions from the fourth task of each se-
quence. This process is repeated for 20 times, and the av-
erage performance of each prediction model across the 20
random splits is then reported.

Baselines For comparison, in our experiment, we include
two baseline models that consider the organic evolvement of
worker performance only:

• running accuracy (RA): Pr(yl = 1) = 1
l−1

∑l−1
j=1 y

j ,
that is, the prediction on the l-th task is made according
to the percentage of high-quality work observed in the
previous l − 1 tasks; and

• latent autoregressive (LAR): the time-series model pro-
posed by Jung, Park, and Lease (2014)1.

1Although GAM is proposed as an improvement of LAR in
Jung and Lease (2015a), we can not use GAM as a baseline be-
cause GAM is tailored to their specific dataset.
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(c) TYPO

Figure 1: Performance comparisons for all prediction models on the three datasets (Top row: accuracy; middle row: F1 score;
bottom row: log loss). Means and standard errors of the mean are reported given 20 random splits of training and testing data.

Metrics We use 3 metrics to evaluate the performance of
a prediction model:
• accuracy: the percentage of tasks in the testing dataset

for which the prediction is correct;
• F1 score: the harmonic mean of precision and recall, i.e.

F1 = 2·precision·recall
precision+recall ; and

• log loss:− 1
Ntest

∑Ntest

j=1 yj log(pj)+(1−yj) log(1−pj),
where Ntest is the total number of predictions made for
the testing dataset, yj is the true label of the j-th sample,
and pj = Pr(yj = 1) is the predicted probability of
high-quality work for the j-th sample.

Intuitively, the higher the accuracy, the better the model. As
some of our datasets are imbalanced2, we provide the F1

score for further reference. For prediction models that gen-
erate probabilistic labels (e.g. RA, LAR, DARX, LARX,
CMC and IOHMM), in order to calculate accuracy and F1

score, we assign a binary label to a testing sample accord-
ing to a predefined threshold of 0.5, that is, ŷj = 1 when
pj > 0.5. Log-loss describes not only whether the predic-
tion is accurate but also whether the prediction is confident,
with a smaller value indicating a better model.

Model Selection Model selection is conducted through
cross validation. Specifically, we partition the training
dataset into 5 folds, pick each of the five folds to test while
using the rest four folds to train models. The model setting
with the highest average performance across the five folds

2The percentages of tasks with high-quality work in the
PUZZLE, CLASSIFY and TYPO datasets are 76.8%, 55.5% and
63.4%, respectively.

(according to log loss) is then selected and a final model is
trained with the whole training dataset using this setting.

We fix the size of history window L = 3 for all super-
vised learning models. For RF, we fix the number of trees
to be 1,000 and tune on the minimum number of samples
on a leaf; for SVM, we tune on the choice of kernel func-
tion (e.g. linear, polynomial, radial basis function, sigmoid);
and for NN, we tune on the choice of activation function
(e.g. logistic sigmoid, hyperbolic tan, rectified linear), the
number of hidden layers (1 or 2) and the number of neurons
in each hidden layer. For autoregressive models, we experi-
ment with different learning rates γ ∈ {0, 0.01, 0.05, 0.1, 1}
for both DARX and LARX. While we also tune on the au-
toregressive order (p ∈ {1, 2, 3}) for DARX, to have a direct
comparison between LAR and LARX, we set p, q = 1 for
LARX. Finally, for the Markov models, we experiment with
3 types of CMC with p ∈ {1, 2, 3} and 4 types of IOHMM:
first-order IOHMMs with different number of hidden states
K ∈ {2, 3, 4}, and a second-order IOHMM with K = 2.

A Comparison on Prediction Performance
Figure 1 compares the prediction performance of all 9 mod-
els (2 baseline models and 7 proposed models) on the three
datasets. We first observe that the 7 proposed models al-
most always outperform the 2 baseline models on all evalua-
tion metrics. For each dataset, the best-performing proposed
model obtains a 2.2%−8.2% improvement on accuracy and
F1 score over the baseline models, and the log loss is also
significantly decreased, especially compared to the running
accuracy model. This suggests that when monetary interven-
tions are provided in task sessions, it is necessary to explic-
itly model the impact of monetary interventions in order to



Table 1: Performance comparison between random forests (RF) and other prediction models. The differences in mean values for
each metric are reported. The statistical significance of paired t-test is marked as a superscript, with †, *, **, and *** representing
significance levels of 0.1, 0.05, 0.01, and 0.001 respectively.

Metric Dataset RA LAR SVM NN DARX LARX CMC IOHMM

Accuracy
PUZZLE 0.025*** 0.029*** 0.007*** 0.004* 0.013*** 0.008*** 0.007** 0.005†

CLASSIFY 0.030*** 0.050*** 0.013** 0.007** 0.016*** 0.010** 0.004 0.011**

TYPO 0.017* 0.017* 0.007 -0.001 -0.001 -0.009 -0.008 0.009†

F1 score
PUZZLE 0.020*** 0.023*** 0.005*** 0.003* 0.010*** 0.005** 0.006*** 0.004*

CLASSIFY 0.049*** 0.061*** 0.018*** 0.011*** 0.016*** 0.013*** 0.010*** 0.021***

TYPO 0.023*** 0.023** 0.011* 0.000 0.001 -0.008 -0.006 0.011*

Log loss
PUZZLE -0.535*** -0.055*** -0.021*** -0.003 -0.030*** -0.028*** -0.015*** -0.003

CLASSIFY -0.719*** -0.059*** -0.018*** -0.004 -0.023*** -0.018*** -0.010*** -0.014***

TYPO -0.586*** -0.031*** -0.041*** -0.023*** -0.046*** -0.033*** -0.100** -0.066***

characterize the temporal crowd work quality accurately and
confidently.

Among all prediction models, the random forests model
seems to outperform other models as its high performance
has been consistently observed across all datasets. In fact,
random forests is the best-performing prediction model ac-
cording to all three metrics on the PUZZLE and CLAS-
SIFY dataset, and it is also the best-performing model on
the TYPO dataset according to the log loss value. Table 1
presents a detailed comparison between random forests and
other models. In particular, given a specific metric, we have
evaluated that metric 20 times for each prediction model as
there are 20 random splits of training and testing data. Thus,
for each model, we obtain a performance vector with 20 ele-
ments. To compare the performance of random forests with
another model, we take the average for the corresponding
performance vectors of both models and compute the differ-
ence in the average values (e.g. average accuracy of random
forests − average accuracy of DARX), which are reported
in Table 1. We further use paired t-test to examine whether
these differences are statistically significant, and the results
are noted as superscripts in Table 1. As we can see in the
table, compared to other models, random forests almost al-
ways has a significantly higher accuracy (i.e. positive differ-
ences for accuracy), higher F1 score (i.e. positive differences
for F1 score) and lower log loss (i.e. negative differences for
log loss), and none of the differences in unexpected direc-
tions (e.g. negative differences for accuracy) are statistically
significant. These results suggest that in practice, the random
forests model gives high prediction performance for various
types of tasks and thus is a good candidate model to use
for requesters who are interested in making predictions on
crowd work quality. We leave the problem of understanding
why the random forests model is consistently accurate for
future study.

A closer look at the estimated random forest model further
provides us with a few practical insights for understanding
the role of monetary interventions on worker performance.
On the one hand, we find that the average performance is
the most important feature for predicting work quality in the
current task; on the other hand, it is observed that among all
intervention-related features (i.e. current intervention level,
average intervention level, historical intervention levels, his-
torical intervention changes), the average intervention level

is the most informative one for the prediction.

Prediction with Limited Training Data
Next, we examine the performance of different models when
the requester has limited training data to start with. To mimic
the realistic scenario for the requester to obtain more training
data over time, given a particular training dataset, we first
randomly take 5% of the workers in it and train the mod-
els using only the data from these workers. After examining
the performance of these models on the testing dataset, we
pick another random 5% of the workers in the original train-
ing dataset who are not previously selected, and combine
their data with the data from the first 5% workers to create
a training dataset that consists of 10% of the workers in the
original training dataset. Following the similar process, we
construct two more training datasets, with 20% and 50% of
the workers in the original training dataset, respectively3.

Figure 2 illustrates the performance of different models on
the PUZZLE dataset when the models are estimated from the
5%, 10%, 20%, 50% and the full training datasets. The per-
formance of the prediction models improves as the amount
of training data increases — With the training data from only
5% of the workers (i.e. 12 workers), all the 7 proposed mod-
els are actually inferior to the baseline LAR model accord-
ing to all three metrics. Some models are especially sensi-
tive to the size of the training dataset. For example, when
the training data is very limited, SVM and NN suffers from
a significantly lower accuracy and F1 score, while CMC
and IOHMM models have very high log loss values. On the
other hand, once the size of the training dataset has been
increased to include 20% of all workers (i.e. 48 workers)
in the original training dataset, almost all proposed models
outperform both RA and LAR on all metrics. When the size
of the training dataset further increases, while the predic-
tion performance of different models keeps improving, the
marginal benefit of extra training data also decreases. Im-
portantly, we notice that even though the model is trained on
only a fraction of the workers in the original training dataset,

3For the TYPO dataset, we only construct two datasets with 20%
and 50% of the workers in the original training dataset (the num-
ber of workers in the these two training datasets are 13 and 32,
respectively) because the total number of workers in this dataset is
relatively small.
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Figure 2: Performance comparisons for all prediction models on the PUZZLE dataset when training data is limited. The solid and
dashed gridlines are the performance references for the RA and LAR models, respectively (training datasets are not required
for these two baseline models).

the random forests model still presents better prediction per-
formance than other models in most cases, which suggests
the robustness of this model against the limited training data.
Similar results are also observed in the CLASSIFY and TYPO
datasets.

Therefore, as a practical implication, a requester may con-
sider to use the LAR model to predict crowd work qual-
ity in task sessions at the initial stage when they just start
to recruit workers to work on their tasks. After collecting
a small training dataset (e.g. a dataset of about 50 work-
ers), the requester can switch to models that explicitly con-
sider the impact of monetary interventions, especially the
random forests model, to obtain more accurate predictions
with higher confidence.

Predictions with Limited Ground Truth
Finally, we consider the scenario when the requester only
has access to limited amount of ground truth. Ground truth
information is quite valuable in crowdsourcing as in many
cases, the requester will not be able to assess the work qual-
ity in a task without the ground truth. So far, we have as-
sumed that the requester knows the ground truth to all his
tasks hence he can evaluate the work quality for every task
in a task session, and all the seven proposed models rely
on the observation of past work quality (i.e. the sequence y)
when making predictions on work quality in the current task.
To understand how the prediction performance of different
models are influenced when this assumption is violated, that
is, when the requester can only check the work quality for a
limited number of tasks in the session, we conduct a new set
of experiments.

In particular, given a specific split of training and test-
ing data, prediction models are learned using the full train-
ing dataset as previously described4. When making pre-
dictions for workers in the testing dataset, we fix the first
three tasks in each worker’s session to be tasks with ground

4We assume that the requester can still evaluate the work quality
on every task in the training dataset. This assumption is realistic,
for example, if the requester bundles multiple tasks with ground
truth into a single session and provide such task sessions to workers
in the initial phase when the training dataset is collected. Models
estimated from such training dataset can be used to predict work
quality on tasks without ground truth when tasks with or without
ground truth are similar (e.g. have similar difficulty levels).

truth in order to obtain an initial record of the worker per-
formance. Then, for the rest of the tasks in the session,
we randomly select a certain portion (r) of them to be
tasks with ground truth, hence work quality is only ob-
servable for these tasks. We vary this percentage, that is,
r ∈ {0%, 20%, 40%, 60%, 80%, 100%}, and examine the
performance of our prediction models in each of these cases
when the ground truth is limited to different degrees.

For the simplicity of illustration, in this experiment, we
focus on the two baseline models and three of the proposed
models — RF, LARX and IOHMM, one from each cate-
gory. For IOHMM, the lack of ground truth can be taken
care of by simply updating the state belief in a different
way when work quality is not observable5. For other mod-
els, we take a Monte Carlo approach to address the pre-
diction problem: We maintain a set of M = 100 work
quality sequences Q = {q1, q2, · · · , qM}, where qm =
(q1m, q

2
m, · · · , ql−1m )(1 ≤ m ≤ M) is a sequence of “sim-

ulated” work quality for all the l − 1 tasks provided to the
worker so far. To forecast the worker’s performance on the
l-th task, we first make a prediction with each of the M
work quality sequences and then take an average of all M
predictions. That is, Pr(yl = 1) = 1

M

∑M
m=1 pm, where

pm is the predicted probability of high-quality work on task
l assuming that qm is the observed work quality sequence
for the past l − 1 tasks. After the prediction, if the ground
truth for task l is available hence the requester can actu-
ally decides the work quality yl, we update qm by set-
ting qlm = yl; otherwise, we sample a work quality ŷl ac-
cording to Pr(ŷl = 1) = pm, and then update qm as
(q1m, q

2
m, · · · , ql−1m , ŷl).

Figure 3 plots for each of the 5 models, the change of av-
erage prediction performance as the amount of tasks with
ground truth increases in the PUZZLE dataset. We find that
RF, LARX and IOHMM models almost always make more
accurate predictions with higher confidence compared to
the baseline RA and LAR models. Among RF, LARX and
IOHMM, the RF and IOHMM models are more robust when
the requester has limited access to the ground truth informa-

5For example, when the order of the IOHMM is p = 1,
the state belief is updated according to the formula bl+1(j) ∝∑K

k=1 bl(k)Ptr(j|k, al) if the requester doesn’t have ground
truth for the l-th task, rather than according to bl+1(j) ∝∑K

k=1 bl(k)Ptr(j|k, al)Pe(y
l|j, al).
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Figure 3: Performance comparisons for different prediction models on the PUZZLE dataset when ground truth is limited.

tion. In particular, the RF and IOHMM model outperforms
the two baseline models as well as the LARX model in re-
gardless of how small the fraction of tasks with ground truth
is, and the prediction performance of RF and IOHMM when
only 20% of the tasks has ground truth even exceeds the per-
formance of the baseline models when the work quality is
always observable for all tasks. Similar results are observed
on other datasets, and they provide further supporting evi-
dence for using the random forests model to predict crowd
work quality under monetary interventions — it can not only
make consistently accurate predictions for various types of
tasks or given small set of training data, but also presents
robust performance under limited supervision.

Conclusions
In this paper, we explore the potential of better characteriz-
ing the temporal pattern of crowd work quality by explic-
itly modeling the impact of external factors, like the pro-
vision of monetary interventions, on worker performance.
We present a wide range of models from 3 categories, in-
cluding supervised learning models, variants of autoregres-
sive models and Markov models, and conduct an empirical
comparison on the performance of these models in predict-
ing crowd work quality under monetary interventions. Our
results demonstrate that these proposed models indeed pro-
vide better predictions compared to baseline models. Fur-
thermore, we identify the random forests model to be an ex-
cellent model for requesters to use to predict work quality
in practice, as it presents consistently high performance for
various types of tasks, and it is relatively robust against the
size of the training dataset or the amount of available ground
truth information.

There are many interesting future directions for this work.
Firstly, as previous studies have shown that worker’s behav-
ioral traces in crowdsourcing tasks, such as how long they
stay in a task and how they interact with the task interface,
can be effective in predicting worker performance (Rzeszo-
tarski and Kittur 2011; Sameki, Gurari, and Betke 2015), it
will be an interesting future work to examine whether these
behavioral traces can be integrated into the current mod-
els to further improve the prediction performance on crowd
work quality under interventions. Secondly, the crowd work
quality predictors presented in this paper can be incorpo-
rated into the general framework of crowdsourcing task de-
sign and be used to optimize interventions in crowdsourc-
ing. For example, as discussed in Yin and Chen (2015), with

an increased capability to predict work quality under mone-
tary interventions in task sessions, the requester may provide
monetary interventions to the right population who are more
likely to react to the interventions, and at a better timing.
Finally, extending these models to different contexts, such
as to model worker engagement in reaction to the interven-
tion messages from the crowdsourcing system, and further
utilizing these models to guide the decisions on when and
to whom to display intervention messages, will be another
exciting future direction.
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