
Fair Information Sharing for Treasure Hunting

Yiling Chen
Harvard SEAS

yiling@seas.harvard.edu

Kobbi Nissim
Ben-Gurion University and Harvard CRCS

kobbi@cs.bgu.ac.il

Bo Waggoner
Harvard SEAS

bwaggoner@fas.harvard.edu

Abstract
In a search task, a group of agents compete to be the first to
find the solution. Each agent has different private informa-
tion to incorporate into its search. This problem is inspired
by settings such as scientific research, Bitcoin hash inversion,
or hunting for some buried treasure. A social planner such as
a funding agency, mining pool, or pirate captain might like
to convince the agents to collaborate, share their information,
and greatly reduce the cost of searching. However, this coop-
eration is in tension with the individuals’ competitive desire
to each be the first to win the search. The planner’s proposal
should incentivize truthful information sharing, reduce the to-
tal cost of searching, and satisfy fairness properties that pre-
serve the spirit of the competition.
We design contract-based mechanisms for information shar-
ing without money. The planner solicits the agents’ infor-
mation and assigns search locations to the agents, who may
then search only within their assignments. Truthful report-
ing of information to the mechanism maximizes an agent’s
chance to win the search. ε-voluntary participation is satis-
fied for large search spaces. In order to formalize the plan-
ner’s goals of fairness and reduced search cost, we propose a
simplified, simulated game as a benchmark and quantify fair-
ness and search cost relative to this benchmark scenario. The
game is also used to implement our mechanisms. Finally, we
extend to the case where coalitions of agents may participate
in the mechanism, forming larger coalitions recursively.

1 Introduction
A group of selfish pirates land on a forsaken island in search
of a hidden treasure, an indivisible item of inestimable value.
Each pirate has gathered limited information – a personal
map marking certain locations on the island where the trea-
sure might be located. Every day, each pirate can dig in a
single location; whoever finds the treasure first will keep it
forever. The pirate captain knows that, if only the pirates
would share their information, many days of useless digging
could be averted. If only she, as the wise and trusted leader,
could convince the pirates to lend her their maps, then she
could pool the collective knowledge and assign digging lo-
cations to minimize wasted effort. But can she assign loca-
tions in a way that is fair and just? And equally important,
can she convince the pirates that it is in their best interests
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to all agree to give her their maps and abide by her assign-
ments?

Our story abstracts settings where agents with heteroge-
neous information compete to solve a search problem. An
example is when different research labs try to locate a gene
corresponding to a genetic disease, and credit is only given
to the first discoverer. Each of the researchers begins their
search based on prior knowledge they acquired. Combining
the researchers’ prior information could speed up discover-
ies and reduce wasted effort.

This tension underlies the difficulties of cooperation in a
competitive environment. A solution to the competing search
problem must take into account many factors: incentives
(agents must want to report accurate information); fairness
(rewarding agents based on the progress made toward find-
ing the answer to the search problem); and welfare (it should
improve on the status quo by shortening the search).

We consider a basic setting where an agent’s informa-
tion consists of a set of possible locations where the solu-
tion (“treasure”) may be found, and each location is equally
likely to be the correct one. This simple model does not
capture cases where agents have complex distributional be-
liefs. However, this setting already raises many interesting
questions and difficulties. We believe that it can highlight
the tension between cooperation and competition in situa-
tions such as the scientific credit example, although it may
not capture cases with complex information structures.

A scenario where the assumptions of our model fit reality
more closely is the Bitcoin digital currency protocol. The
process of “mining” or creating new Bitcoins requires in-
verting a cryptographic hash function: We begin with a tar-
get output and some large set of possible inputs and search
until we find the input that hashes to the output. Many min-
ers may be searching in parallel to find the preimage first;
they each have a list of possible values they have not yet
tried; and each input is (approximately) equally likely. Al-
though we will not suggest that our mechanisms should be
directly applied to Bitcoin in practice, the example shows
that the simple treasure-hunting model can already closely
match some real-world settings. Indeed, “mining pools” or
groups of cooperative Bitcoin searchers exist in practice in
order to save unnecessary trials, save time, and improve their
probability of winning. Our approaches are inspired by the
same motivations.



1.1 Our approach: contract-signing mechanisms
without monetary transfer

Our goal is to design mechanisms that help compet-
ing agents share their information. Our mechanisms are
contract-based in the sense that agents first sign a “contract”
saying the outcome of the mechanism – assignments to dif-
ferent agents of subsets of the (relevant part of the) search
space – would be binding.1 Only then, agents report their
sets to the mechanism which computes and reveals the sub-
set allocated to each agent.

Our mechanisms are implemented without monetary
transfer. This increases their potential applicability to set-
tings where the assumptions of monetary or transferable-
utility mechanisms, such as quasilinearity of utility and no-
budget assumptions, may not hold. For instance, in scientific
research, it seems culturally implausible to suggest a money-
based mechanism for aggregating knowledge.

One drawback of our mechanisms is that there exist situ-
ations where an agent might prefer not to participate. This
could be undesirable for many settings such as in the scien-
tific credit example. However, we show ε-voluntary partici-
pation where ε→ 0 for large search spaces.

Other approaches. A body of literature with similar mo-
tivations to our work is that on cooperative game theory
(CGT) (Osborne and Rubinstein 1994), which concerns
coalition formation in games. The focus of CGT typically
is on stability of a coalition and fairness in sharing value
among members of a coalition. Our setting is superficially
similar in that our mechanism forms “coalitions” of agents
and we are interested in “fairness”, but the treasure-hunting
problem seems to clash with the usual cooperative game
theory approach. Our setting is inherently non-cooperative.
Partly, this is because bargaining needs to be done carefully,
as private information, when revealed, has no more value;
more importantly, this is because the pirates may misreport
their information, and hence we must consider incentives
and strategic behavior.

Trying to avoid making assumptions on how agents per-
ceive other agents’ information, we take a rather agnostic
approach in modeling the information agents have. In our
setting, agents are not required to form probabilistic beliefs
about other agents’ information. This is a weaker assump-
tion than in classical Bayesian game settings, where it is as-
sumed that the prior distribution of private information is
common knowledge and agents must update according to
this prior.

Design goals and benchmark. The first design goal is in-
centives for truthful reporting, so that the mechanism can
correctly aggregate the agents’ information. The second is
fairness, which we interpret as preserving the spirit of the
competition for searching for the treasure. An agent who has
a good chance of finding the treasure without the existence

1We do not consider the question of enforcement in this paper.
In the pirate story, the captain may behead the deviating pirates, a
solution that we don’t generally recommend.

of the mechanism should still have a good chance after the
mechanism produces an assignment. The third is welfare im-
provement: the mechanism should reduce the total digging
costs by combining agents’ information.

In order to quantify the fairness and welfare goals, we
introduce a hypothetical benchmark, the simplified explo-
ration game. The idea is to imagine that all agents explore
within their sets in a uniformly random order, regardless of
the behavior of the others. In this simplified scenario, we can
compute expected digging costs until the treasure is found,
and also each agent’s probability of finding the treasure first.
Based on the benchmark we can set concrete quantifiable
welfare and fairness goals.

A key insight of our approach to designing the mecha-
nism is that we can use the simplified exploration game to
get good incentives. Our mechanism takes the agents’ re-
ported sets and, based on these, computes the winning prob-
ability of each agent in the simplified exploration game. The
set of possible treasure locations (obtained by intersecting
the reported sets) is then divided by the agents in propor-
tion to these computed winning probabilities. We show that
this mechanism has good incentives regardless of what ex-
ploration strategy an agent might actually have planned to
use.

Results summary. We first consider “one-shot” mecha-
nisms: forming a coalition of the entire group of agents. We
construct a one-shot contract-based mechanism and show
that in this mechanism, to maximize winning probability,
each agent should report her private information truthfully if
all other agents report truthfully. Then, we prove the fairness
and welfare properties of the mechanism. We also show that
the mechanism satisfies ε-voluntary participation for ε → 0
as information sets grow large.

We then extend to a setting where several coalitions (each
formed, say, by the one-shot mechanism) want to become
one large coalition. We call these mechanisms “compos-
able” because they can be used to recursively form larger
and larger coalitions. We extend our approach to this set-
ting and also begin an exploration of the dynamics that may
result from the usage of such composable mechanisms.

Some proofs are omitted in order to save space and appear
in the full version of the paper.

1.2 Related work.
It has been widely recognized that private information brings
value and hence sharing of private information should be en-
couraged. (Kleinberg, Papadimitriou, and Raghavan 2001)
draws on concepts in cooperative game theory to assign
value to releasing private information in a few specific set-
tings, including marketing surveys and collaborative fil-
tering and recommendation systems. Interestingly, some
recent work takes an opposite view, arguing that some-
times sharing less information improves social welfare or
other objectives of the designer (Rochlin and Sarne 2014;
Kremer, Mansour, and Perry 2013).

Our setting can model competition in scientific discovery.
(Kleinberg and Oren 2011), (Kitcher 1990), and (Strevens



2003) all model and study scientific development in the so-
ciety. However, the strategic aspects of researchers in their
models lie in the selection of research projects to work on;
researchers who selected the same project compete indepen-
dently. In particular, (Kleinberg and Oren 2011) study how
to assign credits to projects so that the project selection be-
havior of self-interested researchers may lead to optimal sci-
entific advances. Our setting essentially models a scenario
with one project and instead of letting researchers indepen-
dently compete on this project, we design mechanisms to
allow them cooperate and share information while still com-
peting with each others.

We use contract-based mechanisms to promote coopera-
tion. Such approaches are common in other settings where
some level of enforcement is necessary for incentive align-
ment. For example, (Wang, Guo, and Efstathiou 2004) de-
sign Nash equilibrium contracts to guarantee optimal coop-
eration in a supply chain game.

2 The Treasure Hunting Game
Let S (the island) be a finite set of locations, one of which
is s∗ (the treasure). There is a set N of agents who will
be seeking the treasure, and |N | = n. Each agent i has as
private information a set Si ⊆ S, where it is guaranteed that
s∗ ∈ Si. This immediately means that s∗ ∈ ∩i∈NSi. We
use SN to denote the intersection ∩i∈NSi. The fact s∗ ∈
Si for all i ∈ N is common knowledge to all agents. We
assume that each agent i believes that every element in Si is
equally likely to be s∗. We make no other assumptions on
i’s beliefs.2

Initially, the mechanism takes place: Each agent i reports
a set Ŝi ⊆ S to the mechanism and receives a set Πi ⊆ S
from the mechanism. i may only dig at locations in Πi.

Subsequent is the digging phase, consisting of up to |S|
digging periods. In each period, each agent i can “dig” at
one location s ∈ Πi of his choice. It is assumed that an agent
will not dig in the same location twice. The digging phase
ends immediately after the first period in which an agent digs
at s∗. We assume that each agent wishes to maximize her
probability of being the one to win the treasure.

It is assumed above that agents only dig at locations in
their assigned set Πi. This follows if agents agree before-
hand to abide by the outcome of the mechanism and there
is some manner of enforcing that they do so. Thus, we call
the above procedure a contract-signing mechanism. We do
not consider how the contract is enforced in this paper, but
assume there exists a manner of enforcement.

Desiderata of the Mechanism. In the treasure-hunting
scenario, the pirate captain wishes to satisfy three objectives:
• Incentives. The pirates should prefer to report all their

information to the mechanism truthfully so that it can cor-
rectly aggregate.
2For a concrete example model that implies such beliefs, sup-

pose that the treasure is uniformly distributed on the island. Each
agent receives as a signal a set of locations containing the treasure
location, and updates to a posterior belief that the treasure is uni-
form on this set.

• Fairness. The mechanism should be impartial among the
agents and reward each according to the information he
provides.

• Welfare. The mechanism should reduce the amount of
wasted searching.

We formalize the desired incentive property by requiring
that each agent maximize their probability of finding the
treasure by reporting their information truthfully (assuming
that others are not misreporting). This probability is over
any randomness in the mechanism and over the randomness
of the treasure location (recall that each pirate initially be-
lieves that it is uniformly distributed in Si).

The fairness and welfare goals are more subjective. To
meet them, the captain must answer the questions: What do
we mean by “fair”? And how can we quantify “welfare” or
reduced digging cost when we do not know what would have
happened without our mechanism? (Perhaps some lucky pi-
rate would have found the treasure on the first day!)

To answer both of these questions, we next define a sim-
plified exploration game. This game will serve as a “bench-
mark” for fairness and welfare; the captain can compare her
mechanism to what would happen in the benchmark game.
We will also use this game as the basis for our proposed
mechanism.

2.1 Formalizing Fairness: The Simplified
Exploration Game

The simplified exploration game is defined as follows. We
emphasize that the game is hypothetical and is not actually
played by the agents. To emphasize this difference, we de-
scribe the game as being “simulated”, say on a computer or
as a video game with artificial players. In the game, each
simulated player has a subset Si of the island. The player
chooses a permutation of her set Si uniformly at random.
This is the order in which the simulated player will dig in her
set. Then, a simulated treasure location is drawn uniformly
at random from the intersection SN of the sets. Then, there
is a sequence of simulated digging periods; in each period,
each player “digs” at the next location in her chosen permu-
tation. (In the simulation, this corresponds to simply check-
ing whether the next location in the permutation is equal to
the randomly drawn treasure location.) The simulation ends
in the first period where some player simulates a dig at the
simulated treasure location; this player wins the game. (Ties
are broken uniformly at random.)

We next describe how the simplified exploration game can
be used by the pirate captain as a benchmark for her sub-
jective goals. In Section 3, we show how the captain can
actually use the game to construct a mechanism.
• Benchmark for fairness: A mechanism can be consid-

ered fair if a pirate’s chance to win the treasure under the
mechanism matches his chance to win in the simplified
exploration game. Intuitively, the simplified game is fair
because (a) it rewards players for the value of their in-
formation: Players with smaller sets (better knowledge of
the treasure) are more likely to win; (b) it rewards play-
ers only for the value of their information: A player can-
not “jump ahead” of a better-informed opponent by em-



ploying some complex strategy; and (c) it preserves the
competitive aspect of the treasure-hunting game: A player
with high chances of winning in the game is guaranteed
a high chance of winning under the mechanism, so he
does not feel that the mechanism unfairly diminished his
chance of winning.

• Benchmark for welfare: The welfare improvement of a
mechanism is the difference in total expected exploration
cost (number of locations searched) under the mechanism
and in the simplified exploration game. (The expected
digging cost for the mechanism is computed by assum-
ing the treasure is uniformly random in the intersection
and that each pirate explores her assignment Πi in an ar-
bitrary order.) This gives the captain a concrete measure
of the mechanism’s improvement. She can interpret this
measure as saying something about the improvement the
mechanism makes in real life, depending on how closely
she thinks the simplified exploration game matches what
would have happened without the mechanism.

3 One-Shot Mechanisms
In this section, we consider a one-shot setting, where all
agents arrive and simultaneously participate in the mecha-
nism. In Section 4 we will extend the discussion to the case
where subsets of the agents have formed coalitions, and may
wish to form even larger coalitions.

We propose that the captain utilize the simplified explo-
ration game as a basis for a mechanism. The idea is to ask
each pirate to report a set Si, then consider the simplified
exploration game where each pirate corresponds to a player.
Then allocate digging locations according to performance in
this simulated game.

More specifically, our primary mechanism for the one-
shot setting is Mechanism 1, which proceeds as follows.
First, all agents sign contracts agreeing to search only within
their assigned location. Then, each agent i reports a subset
Ŝi of the island to the mechanism. The mechanism com-
putes the intersection ŜN of the reports and assigns each
element of the intersection independently at random accord-
ing to the winning probabilities of the agents (with sets Ŝi

in the simplified exploration game. Then, agents may dig
only within their assigned subsets. (In particular, if the inter-
section is empty or the entire intersection is searched with-
out discovering the treasure, agents are still not allowed to
search elsewhere.)

We can imagine other allocation rules that use the winning
probabilities from the simplified exploration game: for ex-
ample, assigning locations deterministically with the num-
ber of locations proportional to the winning probabilities.
So we can think of Mechanism 1 as giving a framework that
can extend to any rule for dividing the intersection according
to the winning probabilities. However, we do not explicitly
consider these mechanisms and focus on Mechanism 1 for
proving our results.

In the full version of the paper, we show how to efficiently
compute these probabilities of winning for each agent and
show the form of these probabilities, which is also useful for
our results.

Mechanism 1: One-Shot Mechanism
Input: Si for each agent i.
Output: A partition of SN = ∩i∈NSi, with Πi assigned to agent

i.
set SN = ∩iSi;
foreach agent i do

compute i’s winning probability pi;
end
initialize each Πi = ∅;
foreach location s ∈ SN do

let i be a random agent chosen with probability pi;
add s to Πi;

end
output the sets Πi for each i;

3.1 Results for one-shot mechanisms
Theorem 1. In Mechanism 1, if other agents are reporting
truthfully, then each agent i maximizes her probability of
winning the treasure by reporting Si truthfully.

Proof. Under the mechanism, if other agents report truth-
fully, then agent i’s probability of winning the treasure is
exactly the probability (over the location of the treasure and
the randomness of the mechanism) that the treasure location
s∗ is in i’s assigned set Πi. Thus, i prefers to report the set
that maximizes this probability. We need to show that Si is
this set.

Some preliminaries: Denote agent i’s report to the mech-
anism by Ŝi, and fix the reports of agents except i to be
truthful.3 Denote the intersection of the reports by ŜN and
the probabilities of winning computed by the mechanism
by p̂i for each player i. Using this notation we get that
Pr[i wins (when i reports Ŝi)] is equal to Pr[s∗ ∈ ŜN ] · p̂i.

Let MIN = mini |Ŝi| be the smallest reported set size.
In the full version of the paper, it is shown that the proba-
bility that i wins the treasure in the simplified exploration
game given the reported sets can be written as

p̂i =

MIN∑
x=1

1

|Ŝi|
fi(x) (1)

where fi(x) is a probability that does not depend on |Ŝi|, but
only on the reports Ŝj for j 6= i. In particular, if |Ŝi| is not
the unique smallest-sized set, then MIN does not depend
on Ŝi, and p̂i is proportional to |Ŝi|.

The proof proceeds as follows: We will show that for any
fixed report Ŝi, adding any location s 6∈ Si to Ŝi decreases
this probability; and removing any location s ∈ Si from Ŝi

decreases this probability. This will show that i’s winning
probability is maximized by reporting Ŝi = Si. Intuitively,
the first case hurts i because she reports an unnecessarily

3To see why we cannot achieve a “dominant strategy” type of
solution, suppose that all agents but i have committed to not report-
ing location s ∈ S, even if it is in their sets. Then s will not be in
the intersection. So i is strictly better off by omitting s from her
report, even if s ∈ Si.



large set and thus unnecessarily decreases her probability of
winning. In the second case, i obtains a higher probability of
finding the treasure first in the simplified exploration game,
but this is at least balanced out by the chance that the treasure
was in the omitted location s (in which case it will not be in
the intersection and nobody will get it).

Adding a location to Ŝi. Let s 6∈ Si, Ŝi. Add s to Ŝi

and use a prime symbol to denote the results of the change:
Ŝ′i = Ŝi ∪ {s}; Ŝ′N is the intersection when i reports Ŝ′i
rather than Ŝi, fixing all other reports to being truthful; and
p̂′i is the computed probability for i to win in this case. Then,
as the chance of s∗ being in the intersection has not changed,

Pr[i wins (when i reports Ŝ′i)] = Pr[s∗ ∈ Ŝ′N ] · p̂′i
= Pr[s∗ ∈ ŜN ] · p̂′i.

If |Ŝi| is not the unique minimum-size set among all reports,
then as discussed above, p̂i is proportional to 1

|Ŝi|
, so p̂′i =

p̂i
|Ŝi|
|Ŝ′

i|
= p̂i

|Ŝi|
|Ŝi|+1

< p̂i. If it is the unique minimum-size

set, i.e. |Ŝi| = MIN and |Ŝj | > MIN(∀j 6= i), we still
have p̂′i < p̂i. To see this, note that, in the formula for p̂i
where |Ŝi| = MIN , the sum from x = 1 to MIN divided
by |Ŝi| = MIN is an average over the values fi(x); and
the same is true when |Ŝ′i| = MIN . However, this average
can only decrease by including an additional term, because
the terms are strictly decreasing (they are the probability of
winning given on step x, as shown in the full version of the
paper, and this must be strictly decreasing in x since any
exploration order of the agents j 6= i that allows i to win on
day x + 1 also allows i to win on day x). So in either case,
the probability that i wins when reporting Ŝ′i is smaller than
when reporting Ŝi.

Removing a location from Ŝi. Let s ∈ Si, Ŝi. Remove s
from Ŝi and again use a prime symbol to denote the change.
If |Ŝi| 6= MIN , then analogously to above, p̂′i = p̂i

|Ŝi|
|Ŝ′

i|
=

p̂i
|Ŝi|
|Ŝi|−1

. If |Ŝi| = MIN , then we still have p̂′i ≤ p̂i
|Ŝi|
|Ŝi|−1

,
because we have the same multiplicative factor change and
we are also summing over fewer terms. Meanwhile,

Pr[s∗ ∈ Ŝ′N ] = Pr[s∗ ∈ Ŝ′N | s∗ ∈ ŜN ] · Pr[s∗ ∈ ŜN ]

=
|Ŝi| − 1

|Ŝi|
· Pr[s∗ ∈ ŜN ].

Hence, the probability that i wins when reporting Ŝ′N is

Pr[s∗ ∈ Ŝ′N ] · p̂′i ≤
|Ŝi| − 1

|Ŝi|
Pr[s∗ ∈ ŜN ] · p̂i

|Ŝi|
|Ŝi| − 1

= Pr[s∗ ∈ ŜN ] · p̂i
= Pr[i wins (when i reports ŜN )].

It is worth emphasizing that the incentive property is not
compared to any sort of benchmark; it is an absolute prop-
erty of the mechanism itself. For instance, even if an agent
disliked the exploration game benchmark or disagreed that
the mechanism satisfied good fairness properties, that agent
would still agree that her probability of winning is maxi-
mized by reporting her set truthfully.

We next consider the desirable properties of fairness and
welfare, as compared to the benchmark of the simplified ex-
ploration game.
Theorem 2. Mechanism 1 satisfies fairness: the probabil-
ity for an agent to win the treasure under the mechanism is
equal to her probability of winning in the simplified explo-
ration game.

Proof. Immediate from the construction of the mechanism:
The treasure is in some location s∗ in the intersection SN ,
and this location is assigned to player i with probability pi,
where pi is her probability of winning the simplified explo-
ration game.

For welfare, the goal is to quantify the decreased explo-
ration costs under the mechanism as compared to the bench-
mark. Specifically, we count the number of “digs” that take
place, in expectation over the randomness of the mechanism
and of the treasure location. For instance, if all n players dig
on day 1, and then n−3 players dig on day two, then 2n−3
“digs” have taken place. To measure the improvement, we
focus on the parameterRwhich measures the potential “gain
from cooperation”. R is the ratio of the smallest agent set
size to the size of the intersection. For instance, if every
agent has a set of size 300, but by pooling their information
they reduce their sets to just a size of 30, then R = 10.
Theorem 3. Mechanism 1 satisfies the following welfare
properties:

1. E[# digs with mech.] ≤ E[# digs in simp. exp. game].

2. Let R := mini |Si|
|SN | ; then

E [# digs with mech.]
E [# digs in simp. exp. game]

≤ 1

2 n
n+1R

(1 + ε) ,

where ε = ε(n,R, |SN |)→ 0 as |SN |
n →∞.

To interpret the final result, note that, for large set sizes,
then for two agents the ratio is approximately 1

R . This means
that (for instance) if both agents’ sets are 10 times the size of
the intersection, then the mechanism gives about a ten-fold
improvement in digging cost. As the number of agents n
also increases, the ratio approaches 1

2R .

Voluntary Participation. One drawback to our mecha-
nism is that it does not always satisfy voluntary participa-
tion, meaning that there are scenarios where an agent might
rather not participate while all other agents do participate.
This would not be a concern in many settings where partic-
ipation is mandatory; for instance, all of the pirates vote on
whether to implement a mechanism, and once the decision
is made, all must participate together. But in many settings
it is a desirable property. We show that the benefit from not



participating is bounded by an ε increase in the probability
of winning, where ε → 0 as the search space grows large.
We assume for the theorem that an agent who does not par-
ticipate explores uniformly at random. It may be of note that
the MIN in the theorem statement is over all sets besides
i’s, so a single very well-informed agent is still incentivized
to participate when others’ sets are large.
Theorem 4. There is an implementation of Mecha-
nism 1 that satisfies ε-voluntary participation for ε ≤
(n−1)(n−2)

4
1

MIN2 , where MIN = minj 6=i |Si|. In partic-
ular, ε = 0 for n = 2 and ε ≤ n2

4MIN2 for all n.

4 Composable Mechanisms
In the previous section, we considered the case where all
agents arrived and simultaneously joined a single “coali-
tion”. But what if some subsets of the agents have already
met and formed coalitions? These coalitions might still be
able to benefit from sharing information. This motivates our
extension to “composable” mechanisms.

Our setting is exactly the same, except that entities wish-
ing to participate in the mechanism may either be agents (as
before) or coalitions. A coalition C is a set of agents along
with an allocation rule for dividing the locations assigned to
that coalition. Each agent i in the coalition has a set Si and
the intersection

⋂
i∈C Si is denoted SC .

Now, the mechanism should take in the coalitions
C1, . . . , Cm (we can think of individual agents as coalitions
of size one) and output an allocation rule for dividing the
intersection SN = ∩CjSCj among the agents. Then, be-
fore digging starts, this allocation rule is applied to produce
a set of digging locations Πi for each agent i; again, agents
are contractually obligated to dig in their assigned sets. The
goals are the same: good incentives (a coalition should max-
imize its probability of being allocated the treasure location
by reporting SC truthfully); fairness, and welfare. We next
generalize the simplified exploration game and construct a
mechanism that satisfies a corresponding notion of fairness.

4.1 Defining a Fair Mechanism
The simplified exploration game is generalized as follows
(we can think of this as a “less-simplified exploration
game”). First, we simulate each coalition C dividing its in-
tersection SC among its agents according to its allocation
rule, which may be randomized. Lone agents can be inter-
preted as coalitions of size one who assign their entire set to
themselves. Next, a simulated treasure location s∗ is chosen
uniformly at random from the grand intersection SN of all
sets. Finally, each agent picks a uniformly random permu-
tation of her assigned set and explores in that order; the first
to find the treasure wins (ties broken uniformly at random).

This exploration game extends the notion of fairness in
the natural way. We will similarly use this exploration game
as the basis for our composable mechanism, Mechanism 2.
In analogy with Mechanism 1, we assign digging locations
to coalitions randomly according to their probability of win-
ning the “less-simplified” exploration game (more specif-
ically, the probability that one of their members wins the
game).

We do not know of a polynomial-time computable closed-
form expression for the winning probabilities of the less-
simplified exploration game. However, we still have two op-
tions for implementing Mechanism 2. First: For each loca-
tion to be assigned, we simulate the exploration game once
and assign that location to the winner. Second, we can esti-
mate the winning probabilities of each agent by simulating
the game many times, as mentioned in the single-shot case;
a coalition’s winning probability is the sum of its agents’.

Mechanism 2: Composable Mechanism
Input: A set of coalitions C1, . . . , Cm.
Output: A coalition N whose members are the union of the

members in the input coalitions.
set SN = ∩jSCj ;
output N , whose set is SN and whose allocation rule is as
follows:;
foreach coalition Cj do

foreach agent i ∈ Cj do
set or approximate pi using the simulated exploration
game;

end
end
initialize each Πi = ∅;
foreach s ∈ SN do

let i be a random agent chosen with probability pi;
add s to Πi;

end

4.2 Incentives for the Composable Mechanism
The composable mechanism also satisfies our desired incen-
tive property, that truthful reporting maximizes probability
of winning. In addition, we also briefly consider incentives
for coalition formation.
Theorem 5. In Mechanism 2, given that other coalitions
are reporting their sets truthfully, each coalition C maxi-
mizes the probability that an agent in that coalition finds the
treasure by reporting its true set SC .

A note on coalition formation. Two pirates are discussing
their treasure-hunting strategies on the ship as it sails to the
island. They realize that they would be better off sharing
information, so they decide to form a coalition using a fair
contract-signing mechanism (say, Mechanism 1). Later that
evening, while scrubbing the decks, they meet a group of
three pirates who have already formed a coalition of their
own. The two coalitions talk things over and agree to merge
to form a five-person coalition, using Mechanism 2. And the
process continues.

Since Mechanism 2 takes coalitions as input and produces
coalitions, it can be used recursively (i.e., the input coali-
tions had originally formed using Mechanism 2, possibly
from other coalitions, etc). We can think of the entire pro-
cess as being described by a formation tree, where the leaves
are individual agents and each node is a coalition. A node’s
parent, if any, is the coalition that the node joins.

This is primarily a direction for future work, and we do
not explore this question in any depth, but just consider one



initial question. Suppose we fix a formation tree and pick a
single agent. Would that agent’s choice be to join the tree
earlier or later than they currently join? We show that they
prefer to join as early as possible, up to a vanishing ε. The
same holds for coalitions of agents.

Theorem 6. Under Mechanism 2, entities always ε-prefer
to join a formation tree earlier than they currently do. That
is, for any fixed formation tree, a coalition decreases its win-
ning probability by no more than ε if removed from its cur-
rent parent node and attached to any node along a path from
that parent to a leaf. (It may increase its winning probability
arbitrarily.) ε can be bounded by the probability of a tie in
the simplified exploration game, n

mini∈N |Si| .

5 Discussion and Future Work
The treasure hunting problem is one way to abstract the
problem of cooperation in competitive environments. We
identified the key goals in this setting as good incentives for
truthful reporting (allowing information aggregation), fair-
ness (preserving the spirit of the competition), and welfare
(reducing wasted search costs). We initially constructed
single-shot mechanisms for all agents to participate in, then
“composable” mechanisms in which coalitions can merge to
form larger coalitions.

This direction suggests the problem of dynamics of coali-
tion formation over time. If agents can strategically form
coalitions, but have incomplete information about others’
information, how will they behave? How can a mechanism
designer incentivize the formation of a simple, single grand
coalition rather than fragmented strategic formation? There
seem to be many potential avenues to explore this question.

Non-uniform distributions and Bayesian models. It is
natural to raise the question of a non-uniform distribution
on treasure locations, and the related (but separate) question
of a Bayesian model of agent beliefs.

For a non-uniform distribution, one approach could be to
“re-cut” the island into pieces of equal probability to recover
a uniform distribution; but the pieces might not take the
same time to explore, raising new challenges. In this light,
the uniform distribution assumption might be interpreted as
saying that probability of finding the treasure in a location
is proportional to the work it takes to explore that location.
Non-uniform distributions also raise the question of what to
do if the designer does not know the distribution or if agents
have differing or irreconcilable beliefs.

A Bayesian model of the treasure hunting problem would
have the potential to address many different questions than
the ones considered in this paper. It would require stricter
assumptions than this paper: In a Bayesian game, agents
must form beliefs about the knowledge and actions of others.
We allowed agents to be agnostic as to others’ information
and digging strategies, not requiring (for instance) common
knowledge of the information structure. (A Bayesian model
in which the treasure is uniformly distributed over the island
would be compatible with our assumptions, but would make
stronger assumptions that we do not need.) However, the
obvious benefit of a Bayesian model would be to consider

more sophisticated information models and perhaps focus
on strategic aspects of play.

One could apply the “simplified-game” approach in this
paper to construct a “direct-revelation” Bayesian incentive-
compatible mechanism: Ask each agent to report, not just
their set Si, but additionally a strategy for exploring the is-
land. Simulate the exploration game using these reported
strategies (rather than uniform random exploration as in this
paper), and allocate states from the intersection according to
winning probabilities. Alternatively, the mechanism could
collect only reports of the sets Si, attempt to compute a
Bayes-Nash equilibrium on behalf of the players (or a corre-
lated equilibrium), and simulate equilibrium strategies. Two
challenges for this sort of approach are, first, how to model
information (in particular, what the mechanism needs to
know to aggregate reports or compute an equilibrium); and
second, how to define and achieve fairness in the Bayesian
setting.
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